SciELO - Scientific Electronic Library Online

 
vol.9 número1La crítica científica y el arbitraje a los trabajos científicos. Un punto de vista insoslayableInfluencia de dos voltajes de electroeyaculación en la calidad seminal de alpacas (Vicugna pacos) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Journal of the Selva Andina Animal Science

versão impressa ISSN 2311-3766versão On-line ISSN 2311-2581

J.Selva Andina Anim. Sci. vol.9 no.1 La Paz  2022  Epub 01-Abr-2022

https://doi.org/10.36610/j.jsaas.2022.090100003 

Technical Note

Use of crude extract of garlic (Allium sativum) as an alternative in the prevention of saprolegniosis in rainbow trout (Oncorhynchus mykiss)

Oscar Patricio Núñez-Torres1  * 
http://orcid.org/0000-0001-9593-5850

Johana Cristina Paredes-Sandoval1 

Jorge Rodrigo Artieda-Rojas1 

Manolo Sebastián Muñoz-Espinoza1 

1Technical University of Ambato. Faculty of Agricultural Sciences. Cevallos Canton. P.O. Box: 18-01-334. Tel: +593 032746151 - 032746171. Tungurahua, Ecuador.


Resumen

El objetivo del estudio fue, evaluar el aprovechamiento de ajo (A. sativum) en la prevención de saprolegniosis en trucha arcoíris (Oncorhynchus mykiss). Se aplicó estadística descriptiva. utilizamos peces juveniles distribuidos en 10/estanque, en 15 estanques, 150 especímenes (peces de 10 a 15 cm de longitud, con pesos de 150 a 200 g), existió testigos positivos con sintomatologías de saprogneliasis y un individuo negativo en óptimas condiciones de salud. Una vez elaborado el extracto crudo de ajo con las muestras determinadas los resultados fueron: la presencia de estructuras fúngicas con forma de motas de algodón partiendo de la apariencia de este signo en el T1 11, T2 13 y T3 15 truchas respectivamente afectadas y se analizó durante el tratamiento a base del ajo la reducción y ausencia completa del signo tenemos para el T1 22, T2 35 y T3 33 con frecuencia y representando el 24 %, 39 % y 37 % respectivamente obteniendo mejores resultados T2 a base de 500 mg de extracto crudo de ajo. La despigmentación de la piel es otro signo que presencia Saprolegnia la cual se manifestaba en todos los peces y analizando su reducción y ausencia a lo largo del tratamiento se obtuvo como resultados en la T1 y T2 con frecuencias de 59 cada una, representa 33.5 %, y la T3 una frecuencia de 58 que representa el 32.9 %, los tres tratamientos mostraron eficacia ya que no existe una diferencia porcentual significativa. Se concluye que el análisis de Saprogneliasis por Saprolegnia spp., determinó que T2 (500 mg/L de agua/estanque) fue el que controlo de las lesiones macroscópicas de Saprolegnia spp.

Palabras clave: Despigmentación; estructuras fúngicas; inclusión de macerado; lesiones macroscópicas; sintomatologías

Abstract

The objective of the study was to evaluate the use of garlic (A. sativum) in the prevention of saprolegniosis in rainbow trout (Oncorhynchus mykiss). Descriptive statistics were applied. We used juvenile fish distributed in 10/pond, in 15 ponds, 150 specimens (fish from 10 to 15 cm in length, with weights from 150 to 200 g), there were positive controls with symptoms of saprogneliasis and one negative individual in optimal health conditions. Once the crude garlic extract was elaborated with the determined samples, the results were: the presence of fungal structures in the form of cotton specks based on the appearance of this sign in T1 11, T2 13 and T3 15 trouts respectively affected and it was analyzed during the garlic treatment the reduction and complete absence of the sign we have for T1 22, T2 35 and T3 33 with frequency and representing 24 %, 39 % and 37 % respectively obtaining better results T2 based on 500 mg of crude garlic extract. The depigmentation of the skin is another sign of Saprolegnia presence which was manifested in all fish and analyzing its reduction and absence throughout the treatment, results were obtained in T1 and T2 with frequencies of 59 each, representing 33.5 %, and T3 with a frequency of 58 representing 32.9 %, the three treatments showed efficacy since there is no significant percentage difference. It is concluded that the analysis of Saprogneliasis by Saprolegnia spp. determined that T2 (500 mg/L water/tank) was the one that controlled macroscopic lesions of Saprolegnia spp.

Keywords: epigmentation; fungal structures; inclusion of macerate; macroscopic lesions; symptoms

Introduction

The use of plants and substances such as plant extracts have been considered the most ancient in the world, referring to various investigations, medicinal plants have similar efficacy to conventional medications, as well as the use of garlic bulb (Allium sativum) used since time immemorial, dating back to the beginning of humanity, studies focused on its organosulfur compounds such as allicin and ajoene1, they own beneficial effects on the cardiovascular system, immunological, as antifungal, antimicrobial and anticancer2.

The Allium genus has more than 300 varieties, A. sativum in Latin, means "odorous" due to its characteristic odor when crushed, cut or crushed, a vegetable 30 to 40 cm tall, very narrow ensiform leaves, stem with white flowers, itsmain part, the bulb, is underground during its growth and maturation3. garlic is onebulbous plant composed of 6 to 12 bulbils, known as garlic cloves, attached to a covered baseby a semi-transparent membrane that forms its head. Several studies have reported its antioxidant, antimicrobial, anticancer, antifungal among others4, originally from Asia, European traders facilitated its distribution, being introduced to the American continent at the end of the 19th century by the Spanish5.

It is cultivated in cold climates with temperatures between 13 and 24 °C, a maximum of 30 °C and a minimum of 7 °C, on soft ground little sandy, with good drainage, it is a demanding crop, it needs agricultural practices, from the selection and preparation of the soil, the seed, as well such as irrigation, pest control, weeds among others. It is harvested after 6 to 7 months, depending on the characteristics of the environment, for its harvest it can be taken take into account certain characteristics such as color, texture a of leaves6. There are more than 600 varieties of garlic classified into two subspecies, soft neck, hard neck, also classified according to their color, white, purple, pink, violet, red, brown, among other classifications, Chinese garlic, Japanese, elephant, male7.

Phytotherapy indicates multiple benefits for human and animal health, thanks to the use of plants and their extracts, it was possible to prevent and control numerous diseases, which is how garlic was subjected to different studies that refer to its therapeutic properties8. Various studies conducted on animals have reported the use of fresh garlic, it has antioxidant effects, due to its ability to inhibit the formation of free radicals, reinforcing the mechanism of capturing endogenous radicals, increasing cellular antioxidant enzymes, among other beneficial characteristics, the compounds responsible for the antioxidant property is S-allyl-cysteine and allicin9. Garlic contains large amounts of selenium, acts as a coenzyme, increases antioxidant activity in our body. Allicin has been considered the main inhibitor of platelet aggregation, it reduces calcium levels in smooth muscle cells causing vasodilation, allicin and its ajoenes also cause inhibition of cyclooxygenase and lipoxygenase9. According to observational studies in humans, it is mentioned that garlic induces apoptosis of leukemic cells by stimulating the production of peroxide and activating the nuclear actor kappa B10.

Saprolegniosis, an opportunistic disease, affects freshwater fish at all stages of development, causing multifocal cottony lesions due to the proliferation of hyphae in the skin and gills11, however, severe infections can occur, invading internal organs such as the intestine, stomach12. Saprolegnia affects the majority of salmonids that are under artificial breeding, better known as aquaculture, in all their life stages, the most likely being the eggs, juvenile fish, have also been affected by this type of aquatic mould, tilapia and aquarium fish13. Saprolegnia, an opportunistic aquatic mold present in freshwater aquariums, of the class Oomycetes, family Saprolegniaceae14, of the kingdom Chromista, phylogenetically closer to algae, without.

However, Saprolegnia grows in culture media for fungi, produces coenocytic hyphae and mycelium due to its morphological characteristics, it was previously classified within the kingdom Fungi15. The genus Saprolegnia has around 12 species, Saprolegnia parasitica, the main pathogenic species of aquatic organisms, acts as a secondary pathogen16, develops in dead plant material, its spores affect fish, inhabits their gills, taking advantage of the stress caused by improper handling, colonizes host skin causing fungal infection, the factors that favor infection are changes in water temperature, salinity, pH, most infections occur at temperatures below 10 °C, however, Saprolegnia can live in environments between 3 at 33 °C, with salinity 1.75 % ClNa17.

In general, saprolegniosis manifests itself chronically, and can be complicated by the presence of bacteria, causing the death of the fish in an acute form18. The hyphae of S. parasitica focally invade the skin of the fish, progressively penetrating the superficial layers such as the epidermis, dermis, even the hypodermis, muscle, causing imbalance of organic fluids and peripheral circulatory failure, due to the impossibility of maintaining the volume of circulating blood19.

The trout is native to North America from the basins that drain into the Pacific, it was introduced for sport fishing, beginning its breeding in Spain in the 6020. It has a fusiform body, with fine scales, coloration varies according to the environment, age and stage of sexual maturation, the name rainbow trout is due to the presence of a red stripe with different shades on its edges in the shape of a rainbow on the lateral part of the body21. Anatomically, it has two even fins (one pectoral pair, one ventral or pelvic pair), and three unpaired fins (dorsal, anal and caudal), like all salmonids they have an adipose fin that does not have a function defined22. They can reach a weight of 4.5 kg in captivity and 7-10 kg in lakes, rivers and seas23. The trout inhabits uncontaminated aquatic spaces with crystalline fresh water, with causes that present marked topographic unevenness that cause shock or shock of water, producing greater oxygenation24. The optimal temperature for its aging ranges from 11 to 16 °C25. It is a carnivorous animal in free life, it feeds on live prey such as: fly larvae, molluscs and aquatic insects, its requirements are high, in captivity all its nutritional needs must be strictly met26.

Trout farming, as in all animal farming, there is the presence of etiological agents that take advantage of, in one way or another the susceptibility of the individual, they are capable of causing diseases by altering the natural development of the animal, so some diseases could be named of bacterial, viral, parasitic and fungal type in the rearing of this type of salmonids25. Among the bacterial diseases, furunculosis caused by Aeromona salmonicida can be named, characterized by blisters on salmonid skin, loss of appetite and hemorrhages in the liver. Among other bacterial diseases we have yersiniosis or red mouth disease, Aeromonas septicemia, vibriosis among others27.

As an example of a viral disease we have Infectious Pancreatic Necrosis caused by a birnavirus, characterized by a septic condition with high mortality in fingerlings28. As parasitic agents that affect trout, we have ectoparasites such as Ichthyophthirius multifiliis, which causes white spot or Ich, protozoa such as Myxobolus cerebralis, diplostomiasis caused by a strygoid metacercaria known as Diplostomum spathaceum29. The fungal disease that most affects freshwater fish is caused by the genus Saprolegnia, whose etiological agent is an opportunistic fungus that colonizes the skin. and gills of the host30. The objective was to evaluate through the use of crude extract of garlic (A. sativum) as an alternative in the prevention of saprolegniosis in rainbow trout (Oncorhynchus mykiss) of the “El Porvenir” fish farming complex located in the Píllaro canton, province of Tungurahua.

Materials and methods

It was carried out in the “EL PORVENIR” fish farm complex located in the San Andrés parish of the Píllaro canton, Tungurahua Province. Latitude -1.17 longitude -78.53 altitude 3300 masl, with an average minimum temperature of 8 °C and a maximum of 16 °C, Relative Humidity, 88.57%, Coordinates X = 9870622, Y = 772342 (-1.1694472, -78.552773), INAMHI M012731.

The specimens were acquired from Mr. Wilfrido Salas, both the sick and healthy animals were used for the negative control, they were placed in 30 x 40 cm plastic drawers that allowed the entry and exit of water, it served to separate the treatments and repetitions. throughout the research project, its daily management, at the time of performing the immersion baths, then each labeled treatment was placed in a single clean tank, 1.5 x 3 m of brick covered with cement, which were approximately 25 days without lodging rainbow trout (O. mykiss), previously disinfected, the fish selected for the experiment had an approximate weight of 120 to 200 g and a length of 10 to 15 cm, at the time of passing the trout to their ponds it was done through manual nets, avoiding stress and mistreatment as little as possible. 24 h after they were located in their new habitat, they were marked by the use of earrings, for easy registration and to individualize the animals, after these process 10 days were taken as setting, the water that was provided to them was from a natural spring. uncontaminated, at a temperature with an interval of 10-12 ºC. Once the setting time had passed, the corresponding dose of the fresh garlic macerate was administered for each treatment that was carried out for six consecutive days, the evaluations and records per animal were made at a fixed time of 6:30 am, before feeding the fish, each animal was registered, with an artisanal type ladle-shaped mesh, which allowed access to the trout, to avoid stress on the specimens under study.

To obtain the fresh garlic maceration, it was crushed in a mortar with the help of a pestle, and it was immediately filtered to prevent the external components of the peel from remaining in the preparation. Once the pertinent dose for each treatment was obtained, it was I mix with 20 L of water contained in tubs, and then immerse the trout in the immersion bath with the help of a wooden shovel, which will distribute the preparation evenly covering the entire surface of the animals, the immersion was for 20 min for each treatment approximately, this procedure was done daily, with the doses T1 250, T2 500 and finally T3 750 mg/L, with two witnesses, who did not include the fresh garlic macerate, the effect of the inclusion on saprognelliasis was analyzed at 24, 48, 72, 96, and 120 h.

Calculation of dosage of fresh garlic macerate

T1 250 mg/L X= 0.25 g/L= 20 L X= 5 g/20 L X=5 mL/20/L

T2 500 mg/L X= 0.50 g/L= 20 L X= 10 g/20 L X=10 mL/20/L

T3 750 mg/L X= 0.75 g/L= 20 L X= 15 g/20 L X=15 mL/20/L

Study Factors. Application of the fresh macerated garlic at the following times: 24, 48, 72, 96 and 120 h, in the following doses: T0 negative: 0 mg/L of fresh macerated, T0 positive: 0 mg/L, T1 250 mg/L, T2 500 mg/L, T3 750 mg/L.

To characterize the clinical symptoms and lesions of Saprognelliasis in juvenile rainbow trout (O. mykiss), during the time of exposure to fresh garlic maceration per treatment. We worked with juvenile fish distributed in 10 per 1 m2 pond, which were built of brick with cement plaster protected with a zinc cover, with controlled water inlets and constant flow, adding a total of 15 ponds, with a total of 150 specimens (10 to 15 cm in length with an average weight of 150 to 200 g), a positive control with diagnosed saprognelliasis, a negative control made up of completely healthy animals, and the last three ponds, with doses of fresh garlic maceration for six days.

The response variables, the clinical symptomatology was determined for all the fish, it was monitored every day since the animals were exposed to the fresh garlic maceration, each symptomatology was characterized independently, it was observed and recorded in individual records, all types of signs from lethargic problems. The lesions were established in all the fish, each external lesion, hemorrhages at the base of the fins, cottony structures in the fins and gills, as well as spots on the body of the animals, were examined, the fish were taken using manual nets and the improvement or not when exposed to raw garlic maceration was recorded, in these two variables the percentage of mortality was recorded, the last day of the experiment, a necropsy was performed on each of the specimens to observe possible internal injuries such as hemorrhages.

It was analyzed through a descriptive statistics of frequency, in which the time that the fresh maceration of garlic (A. sativum) needed was assessed, in addition, the most effective concentration was evaluated, and finally, the analysis of Saprogneliasis by Saprolegnia spp., the pathology was detailed for each pond of all the animals, two controls were used, one positive and one negative for the validation of the research.

Results

Table 1 Presence of cotton balls 

Treatment alternatives/efficacy (mg) Trout N=90 Frequency/presence Percentage %
P R A
T1 250 30 11 11 0 22 24
T2 500 30 13 4 18 35 39
T3 750 30 15 4 14 33 37
Total 90 39 19 32 90 100

Table 2 Skin depigmentation 

Treatment alternatives/ efficacy (mg) Trout N=90 Frequency/presence Percentage %
P R A
T1 250 30 30 29 0 59 33.5
T2 500 30 30 17 12 59 33.5
T3 750 30 30 10 18 58 32.9
Total 90 90 56 30 176 100

Table 3 Skin erosion 

Treatment alternatives/ efficacy (mg) Trout N=90 Frequency/presence Percentage %
P R A
T1 250 30 30 29 0 59 33.5
T2 500 30 30 29 0 59 33.5
T3 750 30 30 23 5 58 32.9
Total 90 90 81 5 176 100

Table 4 Congestion 

Treatment alternatives/efficacy (mg) Trout N=90 Frequency/presence Percentage %
P R A
T1 250 30 30 29 0 59 33.5
T2 500 30 30 20 9 59 33.5
T3 750 30 30 0 28 58 32.9
Total 90 90 49 37 176 100

Table 5 White-yellowish pigmentation 

Treatment alternatives/ efficacy (mg) Trout N=90 Frequency/presence Percentage %
P R A
T1 250 30 17 16 0 33 32.3
T2 500 30 18 17 0 35 34.3
T3 750 30 18 16 0 34 33.3
Total 90 53 49 0 102 100

Table 6 Scale loss 

Treatment alternatives/ efficacy (mg) Trout N=90 Frequency/presence Percentage %
P R A
T1 250 30 30 29 0 59 33.5
T2 500 30 30 29 0 59 33.5
T3 750 30 30 28 0 58 32.9
Total 90 90 86 0 176 100

Table 7 Ulcers 

Treatment alternatives/ efficacy (mg) Truchas N=90 Frequency/presence Percentage %
P R A
T1 250 30 16 15 0 31 32.2
T2 500 30 17 16 0 33 34.3
T3 750 30 17 15 0 32 33.3
Total 90 50 46 0 96 100

Table 8 Necrosis 

Treatment alternatives/ efficacy (mg) Truchas N=90 Frequency/presence Percentage %
P R A
T1 250 30 7 6 0 13 23
T2 500 30 12 11 0 23 41
T3 750 30 11 9 0 20 36
Total 90 30 26 0 56 100

Discussion

The research carried out by Ñahuincopa Vergara32 used the Probit LD50 (Median Lethal Dose) method, obtaining as a result the concentration of garlic extract at 70.36 % at 24 h and 68.34 % at 48 h of inhibitory effect, based on the results obtained. mentions that Saprolegnia sp. is sensitive to the treatment applied with garlic extract32. On the other hand, Armuelles Bernal et al.33 evaluated the effect of adding garlic powder at 2 and 4 % to the diet of Jack mackerel (Seriola lalandi) as a preventive treatment against infestations of Zeuxapta seriolae, a total of 180 organisms. Distributed in three experimental groups, one control and 2 treatments with 3 repetitions for each one, the diet supplemented with garlic powder was administered for 32 days, then the jack mackerel culture was infested with the parasite Z. seriolae, negative bacteria, making it an antibiotic with effective action when used in doses of 50 mg per day during treatment. three consecutive days.

Similarly, Prieto et al.34, states that the antibacterial effect of A. sativum is similar to penicillin, acting specifically against Gram-negative bacteria, making it an antibiotic with effective action when used in doses of 50 mg per day during treatment. three consecutive days. Villamar Ochoa35, points out that the use of garlic and lemon as a substitute for antibiotics and disinfectants in shrimp production has given good results in the treatment of diseases, pointing out that thanks to the action of these two natural products, the presence of microorganisms is significantly reduced. pathogens, the defenses of the shrimp are stimulated, reducing the appearance of diseases and therefore the mortality of the crustaceans.

Barriga González & Clavijo Rojas36, when evaluating malachite green and methylene blue versus garlic and tobacco extract on the control and eradication of the ornamental tiger tigrito, obtained better results with malachite green and methylene blue as chemical treatment at a dose of 7 drops. per 40 L of water, eliminating the protozoan 5 days after treatment. The study carried out by Juárez-Segovia et al.37 has shown that the garlic extract obtained by maceration in a phosphate-buffered saline solution has antifungal effectiveness against fungi of the Aspergillus genus, inhibiting their growth.

Silva Blanco38, states that garlic eliminates 100 % of the Trichodina ssp. ectoparasite, applied as a bath with a concentration of 800 ppm to tilapias in two days, in terms of weight gain and feed conversion, no significant differences were found between treatments. However, it states that the ration including the garlic extract is well tolerated by the fish and also acts by strengthening the immune system, protecting them from the different pathogens and thus increasing the fish survival. Agurto Rodríguez & Rivera Intriago39 in their study carried out on shrimp evaluated the antibacterial, antioxidant and immunostimulant properties of extracts of garlic, oregano, cranberry green tea, Astragalus and propolis, the antibacterial effect was evaluated by using 5 pathogenic bacteria of which 2 are of importance in aquaculture, 2 are enteric bacteria that affect consumers of contaminated aquatic animals and 1 opportunistic bacteria in humans. García Gómez & Sánchez-Muniz40, conducted tests based on plant extracts used as antibacterials in fish, for which garlic in saline solution inhibited the growth of Aeromonas hydrophila at a concentration of 6.25 mg/mL-1 and Photobacterium damselae at a concentration of of 6.3 mg/mL-1.

It was observed that the group of trout from the positive control previously sick with Saprolegnia sp., increased macroscopic lesions over time and some of the trout died, on the other hand the negative control that at the beginning of the experiment the specimens did not show associated lesions to the fungus showed lesions on the 4th day of observation, on the contrary, the trout subjected to the treatment based on fresh garlic maceration improved their appearance and from the 2nd day of application, a decrease in the lesions caused by the fungus was noted, that is why It is concluded that fresh garlic maceration serves as a natural antifungal and controls saprolegniosis in rainbow trout.

The macroscopic lesions that were identified in the rainbow trout used in the experiment were the following: (loss of scales, skin depigmentation, erosion, congestion, yellowish-white pigmentation, presence of fungal structures with the appearance of cotton specks, ulcers and necrosis). Other symptoms that were identified were: (lethargy, imbalance, exhaustion and loss of reflection, even causing the death of the trout).

REFERENCES

1. González Maza M, Guerra Ibáñez G, Maza Hernández JC, Cruz Dopico A. Revisión bibliográfica sobre el uso terapéutico del ajo. Rev Cub de Med Fis y Rehab 2014;6(1):61-71. [ Links ]

2. José Ramón Llanes Echevarría Alimentos hipolipemiantes que mejoran la salud cardiovascular. Rev Cubana Cardiol 2017;23(4). [ Links ]

3. Corrales Reyes IE, Reyes Pérez JJ. Actividad antimicrobiana y antifúngica de Allium sativum en estomatología. Rev 16 abril 2014;(254):59-68. [ Links ]

4. Suárez Cunza S, Castro Luna A, Ale Borja N. Actividad antioxidante in vitro de un extracto acuoso de Allium Sativum variedad Huaralino. Revi Soc Quím Perú 2014;80(4):308-16. [ Links ]

5. Kim S, Kim DB, Jin W, Park J, Yoon W, Lee Y, et al. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Nat Prod Res 2018;32(10):1193-7. DOI: https://doi.org/10.1080/14786419.2017.1323211Links ]

6. Cuzco Cusco MM, Ortiz Rodas PE (dir). Obtención del ajo negro por reacción de Maillard para el desarrollo de productos culinarios y su aplicación en cocina innovadora [tesis licenciatura]. [Cuenca]: Universidad de Cuenca; 2019 [citado 21 de octubre de 2021]. Recuperado a partir de: http://dspace.ucuenca.edu.ec/handle/123456789/33657Links ]

7. Fernández S. Cinco tipos de ajos para enriquecer tus platos [Internet]. Alimente +. 2020 [citado 13 de mayo de 2021]. Recuperado a partir de: https://www.alimente.elconfidencial.com/nutricion/2020-08-08/cinco-tipos-ajos-enriquecer-platos_2190047/?utm_source=facebook& utm_medium=social& utm_campaign=BotoneraWLinks ]

8. Poaquiza Paguna JS. Uso de plantas medicinales en la labor de parto en la parroquia de Salasaca [tesis licenciatura]. [Ambato]: Universidad Técnica de Ambato; 2018 [citado 16 de octubre de 2021]. Recuperado a partir de: https://repositorio.uta.edu.ec/jspui/handle/123456789/27693Links ]

9. Campos Monteza CJ, López Ugarte LlC. Efecto inhibitorio in vitro del extracto acuoso de Allium sativum L. "ajo" frente a Pseudomonas aeruginosa y Acinetobacter baumannii multirresistentes aisladas del Hospital Regional de Lambayeque [tesis licenciatura]. [Lambayeque]: Universidad Nacional "Pedro Ruiz Gallo"; 2017 [citado 6 de mayo de 2021]. Recuperado a partir de: https://scholar.google.es/citations?view_op=view_citation& hl=es& user=uTHzPWYAAAAJ& citation_for_view=uTHzPWYAAAAJ:d1gkVwhDpl0CLinks ]

10. Ayvar Serna S, Díaz Nájera JF, Alvarado Gómez OG, Velázquez Millán I, Peláez Arroyo A, Tejeda Reyes MA. Nematicidal activity of plant extracts against Meloidogyne incognita (Kofoid y White) in okra (Hibiscus esculentus L. Moench) Biotecnia 2018;20(1),13-9. DOI: https://doi.org/10.18633/biotecnia.v20i1.524Links ]

11. Riquelme R, Olivares-Ferretti P, Fonseca-Salamanca F, Parodi J. Aguas profundas, un efecto en la temperatura para el manejo de caligidosis en el salmón del Atlántico (Salmo salar). Rev Investig Vet Perú 2017;28(1):33-42. DOI: https://doi.org/10.15381/rivep.v28i1.12938Links ]

12. Rojas V, Ulacio D, Jiménez MA, Perdomo W, Pardo A. Análisis epidemiológico y control de Sclerotium cepivorum Berk. y la pudrición blanca en ajo. Bioagro 2010;22(3):185-92. [ Links ]

13. Flores-Nava A, Brown A. Peces nativos de agua dulce de América del Sur de interés para la acuicultura: Una síntesis del estado de desarrollo tecnológico de su cultivo [Internet]. Roma. Organización de las Naciones Unidas para la Agricultura y la Alimentación; 2010 [citado 2 de octubre de 2021]. 204 p. Recuperado a partir de: https://www.fao.org/3/i1773s/i1773s.pdfLinks ]

14. González de Canales ML, Bosco Ortiz J, González del Valle MA, Sarasquete C. Saprolegniasis en poblaciones naturales de peces. Cienc Mar 2001;27(1):125-37. DOI: https://doi.org/10.7773/cm.v27i1.373Links ]

15. Kuhar F, Castiglia V, Papinutti L. Reino Fungi: morfologías y estructuras de los hongos. Boletín Biol 2013 (28):11-8. [ Links ]

16. Leyton A, Urrutia H, Vidal JM, de la Fuente M, Alarcón M, Aroca G, et al. Actividad inhibitoria del sobrenadante de la bacteria Antártica Pseudomonas sp. M19B en la formación de biopelículas de Flavobacterium psychrophilum 19749. Rev Biol Mar Oceanogr 2015;50(2):375-81. DOI: https://doi.org/10.4067/S0718-19572015000300016Links ]

17. Castro Perez VK, Serrano E, León J. Aislamiento e identificación morfológica de Saprolegnia sp. en paiche (Arapaima gigas) proveniente de criaderos artesanales en Iquitos, Perú. AquaTIC 2014;(41):8-18. [ Links ]

18. Zaror L, Collado L, Bohle H, Landskron E, Montaña J, Avendaño F. Saprolegnia parasitica en salmones y truchas del sur de Chile. Arch Med Vet 2004;36(1):71-8. DOI: https://doi.org/10.4067/S0301-732X2004000100008Links ]

19. Bruno DO, Acha EM (dir), Cousseau MB (dir). Patrones de utilización de la laguna Mar Chiquita (Buenos Aires, Argentina) y área costera adyacente por parte de los primeros estadios ontogénicos de peces [tesis doctoral]. [PMar del Plata]: Universidad Nacional de Mar del Plata; 2014. DOI: https://doi.org/10.13140/2.1.3208.7043Links ]

20. Crespi V, New M. Oncorhynchus mykiss (Walbaum, 1792) [Salmonidae] [Internet]. Roma: Organización de las Naciones Unidas para la Agricultura y la Alimentación; 2009 [citado 22 de octubre de 2021]. 34 p. Recuperado a partir de: https://www.fao.org/fishery/docs/DOCUMENT/aquaculture/CulturedSpecies/file/es/es_rainbowtrout.htm [ Links ]

21. Trucha Arco Iris (Oncorhynchus mykiss) [Internet]. Club de Exploradores. 2015 [citado 5 de marzo de 2021]. Recuperado a partir de: http://exploradores.org/limanimal022trucha.htmLinks ]

22. Equipo Editorial Peces. Aletas de los peces (tipos) ¿para qué sirven?. Peces-Animales y Biología [Internet]. 2017 [citado 5 de mayo de 2021]. Recuperado a partir de: https://peces.animalesbiologia.com/anatomia-fisiologia/aletas-de-los-peces-tipos [ Links ]

23. Cultivo de trucha [Internet]. Agrotendencia. 2019 [citado 5 de marzo de 2021]. Recuperado a partir de: https://agrotendencia.tv/agropedia/cultivo-de-la-trucha/ [ Links ]

24. Proceso reproductivo de la trucha arco iris [Internet]. Centro Turístico Y Recreativo Truchera Boquerón. 2016 [citado 5 de septiembre de 2021]. Recuperado a partir de: https://trucheraboqueron.jimdofree.com/la-trucha-arco-iris/Links ]

25. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Manual práctico para el cultivo de la trucha arcoíris [Internet]. Guatemala: Organización de las Naciones Unidas para la Agricultura y la Alimentación; 2014 [citado 2 de septiembre de 2021]. 44 p. Recuperado a partir de: https://www.fao.org/3/bc354s/bc354s.pdf [ Links ]

26. Santamaría Merchán SC. Nutrición y alimentación de peces nativos [Internet]. Boyacá: Universidad Nacional Abierta y A Distancia; 2014 [citado 12 de octubre de 2021]. 170 p. Recuperado a partir de: https://repository.unad.edu.co/handle/10596/2697 [ Links ]

27. Aguilar-García CR. Infección de piel y tejidos blandos por el género Aeromonas. Med Int Méx 2015;31(6):701-8. [ Links ]

28. Salgado-Miranda C. Infectious pancreatic necrosis: an emerging disease in the Mexican trout culture. Vet Méx 2006;37(4):467-77. [ Links ]

29. Sierra EE, Espinosa de los Monteros A, Real F, Herráez P, Castro P, Fernández A. Enfermedades parasitarias: protozoarios externos e internos y misceláneos. Rev Canar Cienc Vet 2006 (3):21-9. [ Links ]

30. Acosta Hernandez BM. Principales enfermedades producidas por Chromistas y hongos (Eumicota) en peces [Internet]. Grupo de Micología Veterinaria: Universidad de la Palmas de Gran Canaria; 2013 [citado 16 de septiembre de 2021]. Recuperado a partir de: https://micologiaveterinaria.ulpgc.es/principales_enfermedades_pecesi.htm [ Links ]

31. Unidad Educativa Jorge Álvarez [Internet]. Red Hidrometeorologica de Tungurahua. 2021 [citado 5 de octubre de 2021]. Recuperado a partir de: https://rrnn.tungurahua.gob.ec/red/estaciones/estacion/530b84ed74daaf23bce53cecLinks ]

32. Ñahuincopa Vergara AS. Efecto del extracto de "ajo" Allium sativum como fungicida natural de Saprolegnia sp aislado de ovas de "trucha arco iris" Oncorhynchus mykiss en condiciones de laboratorio [tesis licenciatura]. [Puno]: Universidad Nacional del Altiplano; 2017 [citado 6 de octubre de 2021]. Recuperado a partir de: https://1library.co/document/zwvm7jvq-efecto-extracto-allium-sativum-fungicida-natural-saprolegnia-aislado.htmlLinks ]

33. Armuelles Bernal CE, Barón Sevilla B (dir), Hernández Rodríguez M (dir). Effect of the garlic (Allium sativum) added to the yellowtail jack (Seriola lalandi) diet for the preventive treatment against infestations with Zeuxapta seriolae (Meserve, 1938) Price, 1962 [tesis maestria]. [Ensenada]: Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California; 2016 [citado 10 de mayo de 2021]. Recuperado a partir de: https://cicese.repositorioinstitucional.mx/jspui/handle/1007/68 [ Links ]

34. Prieto A, Ocampo AA de, Fernández A, Pérez MB. El empleo de medicina natural en el control de enfermedades de organismos acuáticos y potencialidades de uso en Cuba y México. TIP 2005;8(1):38-49. [ Links ]

35. Villamar Ochoa CA. Acuicultura orgánica-ecológica: Aplicación de productos naturales en sustitución de químicos en los procesos de cría de camarones en cautiverio. AquaTIC 2000;(10). [ Links ]

36. Barriga González HG, Clavijo Rojas DA. Evaluación del verde de malaquita con azul de metileno y extractos de ajo y tabaco, para el control y erradicación del ICK en el pez ornamental tigrito (Pimelodus pictus) [tesis licenciatura]. [Bogota]: Universidad de la Salle; 2008 [citado 16 de septiembre de 2021]. Recuperado a partir de: https://ciencia.lasalle.edu.co/zootecnia/79/Links ]

37. Juárez-Segovia KG, Díaz-Darcía EJ, Méndez-López MD, Pina-Canseco MS, Pérez-Santiago AD, Sánchez-Medina MA. Effect of garlic extracts (Allium sativum) on the development in vitro of Aspergillus parasiticus and Aspergillus niger. Polibotánica 2019;(47):99-111. DOI: https://doi.org/10.18387/polibotanica.47.8Links ]

38. Silva Blanco SA. Efecto de la inclusión de extracto de ajo (Allium sativum) en una ración balanceada, sobre el crecimiento y la sobrevivencia de goldfish (Carassius auratus) y levistes (Poecilla reticulata) en cultivo [tesis en Internet]. [Pamplona]: Universidad de la República; 2013 [citado 6 de octubre de 2021]. Recuperado a partir de: https://bibliotecadigital.fvet.edu.uy/handle/123456789/2224Links ]

39. Agurto Rodríguez MG, Rivera Intriago L (dir). Selección y evaluación de concentraciones de extractos naturales con potencial actividad antibacterial antioxidante e inmunoestimulante sobre el camarón litopenaeus vannamei. [tesis licenciatura]. [Machala]: Universidad Técnica de Machala; 2011 [citado 6 de mayo de 2021]. Recuperado a partir de: http://repositorio.utmachala.edu.ec/handle/48000/1817Links ]

40. García Gómez LJ, Sánchez-Muniz FJ. Revisión: Efectos cardiovasculares del ajo (Allium sativum). ALAN 2000;50(3):219-29. [ Links ]

Source of financing This study was funded by the Technical University of Ambato.

Conflicts of interest The manuscript was prepared and reviewed with the participation of the author, who declares that there is no conflict of interest that jeopardizes the validity of the results presented.

Acknowledgments The autors wish to express their gratitude to the Faculty of Agricultural Sciences of the Technical University of Ambato for the support provided to carry out this work.

Ethical considerations The research complied with the ethical standards of the information process.

Authors' contribution to the articleNúñez-Torres Oscar Patricio, contributed with the structure and writing of the article. Paredes-Sandoval Johana Cristina, contributed with the field work. Artieda -Rojas Jorge Rodrigo, contributed with the tabulation of results and Muñoz- Espinoza Manolo Sebastián, contributed with data tabulation.

Research limitations There was no limitation for the development of the research.

ID of article: 104/JSAAS/2022

Note from the Editor: Journal of the Selva Andina Animal Science (JSAAS) remains neutral with respect to published jurisdictional claims maps and institutional affiliations.

Received: January 01, 2022; Revised: February 01, 2022; Accepted: March 01, 2022

*Contact address: Technical University of Ambato. Faculty of Agricultural Sciences. Cevallos Canton. P.O. Box: 18-01-334. Tel: +593 032746151 - 032746171. Tungurahua, Ecuador. Oscar Patricio Núñez-Torres E-mail address: op.nunez@uta.edu.ec

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons