SciELO - Scientific Electronic Library Online

 
vol.8 número2Osteosíntesis con placa mínimamente invasiva (OPMI) para fractura completa de tibia y peroné en canino (Canis lupus familiar): Pre - Planificación virtual índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Journal of the Selva Andina Animal Science

versión impresa ISSN 2311-3766versión On-line ISSN 2311-2581

J.Selva Andina Anim. Sci. vol.8 no.2 La Paz  2021

https://doi.org/10.36610/j.jsaas.2021.080200114 

Review Article

Phytotherapy an alternative to pest and disease control of bees

Jesús Humberto Reyna-Fuentes1 

Juan Carlos Martínez-González1  * 
http://orcid.org/0000-0003-1331-663X

Amador Silva-Contreras2 

Daniel López-Aguirre1 

Sonia Patricia Castillo-Rodríguez1 

1Universidad Autónoma de Tamaulipas. Facultad de Ingeniería y Ciencias. Centro Universitario Adolfo López Mateos. Edificio Centro de Gestión del Conocimiento, 4° piso. Ciudad Victoria, Tamaulipas. C.P. 87149. México.

2Universidad Autónoma de Tamaulipas. Facultad de Medicina Veterinaria y Zootecnia. Carretera Cd. Victoria - Cd. Mante Km. 5. Ej. Santa Librada. Ciudad Victoria, Tamaulipas. C.P. 87274. México.


Resumen

La abeja (Apis mellifera) ha sido la más utilizada debido a su capacidad de polinización y producción de miel. En la actualidad, la apicultura engloba diversos problemas sanitarios, los cuales han afectado drásticamente las poblaciones de colmenas en producción. Entre las enfermedades que afectan a las abejas están: loque americana, loque europea, cría de cal, cría de piedra, nosemiasis, acariosis y varroasis, entre otras. El ácaro Varroa destructor, el cual funge como vector de distintas enfermedades y es asociado recientemente al síndrome del colapso de las colonias. Asimismo, este acaro afecta a las abejas durante dos fases, la forética y la reproductiva. Sin embargo, el uso indiscriminado de acaricidas sintéticos, además de reflejar un impacto nocivo al medio ambiente, afectar la inocuidad de productos derivados de la colmena. Además, han originado resistencia en las poblaciones de V. destructor. Esto ha obligado a desarrollar nuevas estrategias y alternativas de tratamientos, como lo es el uso de diversas plantas nativas o endémicas de la región (moliendas, extractos, aceites y/o extractos deshidratados en polvo). Los aceites esenciales de plantas son compuestos aromáticos volátiles, principalmente terpenoides, fenilpropanoides, monoterpenos, sesquiterpernos y alcoholes, estos presentan una amplia gama de actividad antimicrobiana y antioxidante, por lo que la adición de aceites esenciales de clavo, eucalipto, menta, romero, orégano y canela pueden ser beneficioso en el apiario. Los usos de estos productos pueden minimizar los costos de producción, incentivando a los productores el uso de dichos productos.

Palabras clave: Fitoterapia; extractos; plagas; enfermedades; abejas; apicultura; miel

Abstract

The honey bee (Apis mellifera) has been the most widely used bee due to its pollination and honey production capacities. Currently, beekeeping encompasses several health problems, which have drastically affected the populations of beehives in production. Among the diseases affecting bees are: American foulbrood, European foulbrood, limebrood, stonebrood, nosemiasis, acariosis and varroasis, among others. The Varroa destructor mite, which acts as a vector of different diseases and is recently associated with colony collapse syndrome. This mite affects bees during the phoretic and reproductive phase. However, the indiscriminate use of synthetic acaricides, in addition to having a harmful impact on the environment, affects the safety of products derived from the hive. In addition, they have originated resistance in V. destructor populations. This has forced the development of new strategies and treatment alternatives, such as the use of various plants native or endemic to the region (milling, extracts, oils and/or dehydrated powdered extracts). Plant essential oils are volatile aromatic compounds, mainly terpenoids, phenylpropanoids, monoterpenes, sesquiterpenes and alcohols, which have a wide range of antimicrobial and antioxidant activity, so the addition of essential oils of clove, eucalyptus, mint, rosemary, oregano and cinnamon can be beneficial in the apiary. The uses of these products can minimize production costs, encouraging producers to use these products.

Keywords: Phytotherapy; extracts; pests; diseases; bees; beekeeping; honey

Introduction

The Apis mellifera bee which belongs to the hymenoptera order, is used for its capacity to produce honey and diverse beneficial products for the health1, pharmaceutical, cosmetological and food industries2. Beekeeping is one of the main activities in the agricultural sector, representing an important source of income3, the honeybee has a favorable impact on the environment, used for crop pollination4, increasing their productivity and fruit yield3,5.

In recent years, beekeeping has suffered from sanitary problems, including bacterial and fungal pathological processes such as European foulbrood, stonebrood, limebrood, nosemosis6-9 and viral diseases10. The presence of the Varroa destructor mite is the main vector of these pathological processes11,12. This infestation caused by an ectoparasitic mite 13-15 is distributed in most countries of the world16 and is the one that most concerns beekeepers3,13,14. Currently in Mexico, the presence of varroasis has been reported in all states7,13-15,17, the state of Veracruz presented the first report of identification in the 1990s13.

Varroa sp. infestations generate a negative effect on the health of bees, feeding on their hemolymph and inhibiting immune responses 18,19, it has been described that high infestations of Varroa sp. hardly survive more than two years if not treated and/or controlled, with the loss of up to 25 % of the adult bee's weight20. Wing deformations and lower longevity in worker bees and drones are also reported21. Consequently, the economic impact is usually reflected in the decrease of honey yield22, when infestation is above 5.0 % and no treatment is given, losses reach almost 100 % of honey and the hive can disappear within two years23.

The excessive use of synthetic acaricides has generated resistance in the V. destructor populations, in addition to contaminating the products derived from the hive, which provides a need to develop new strategies and treatment alternatives. The objective of the present work was to describe the use and benefits of plant-derived products, such as essential oils, dehydrated powdered extracts, leaves and/or nuts, as well as their active components and direct effects on the V. destructor mite.

Development

Phytotherapy as an alternative against varroasis. Natural products (NP) have a high potential for the control of various pests24, due to their diverse efficacy, mainly ovicidal and anti-feedant, and do not generate adverse effects on other species25. In addition, they have been reported to be a highly effective treatment choice against pest’s resistant to synthetic insecticides26.

In recent decades, alternative strategies against V. destructor have been developed through the use of plant-derived products, such as plant extracts25, essential oils (EO) and organic acids(OA) 25,27,28, with acaricidal activity, which pose no risk to both bee and humans health21.

Organic acids. Rosenkranz et al.29 described oxalic acid and formic acid as the most commonly used soft acaricides in beekeeping, compounds with low risk to bee health, as well as infrequent or no residues in hive products30.

Formic acid is a colorless and volatile AO, present in stings and/or oral venoms of a wide range of hymenopterans, as well as being a natural substance present in honey31. Applications of this acid have been used since the 1980s in European countries, with Germany being a pioneer in this application29. The use of this biopesticide as a control method against varroasis showed an efficiency of 60 to 92 %, varying according to the method of application32, because several factors, such as climatic conditions and temperature, with successful results (10 to 25 ºC), application season, distance from the volatilization site of formic acid to the frame, brood present and conditions of the hive can interact in the efficacy of the product33. Although this acid is a natural derivative, it has disadvantages34,35, damage to operculated and non-operculated brood has been described, associated to an incorrect application methodology. At present1, favorable results were described by using 70 % formic acid, using 10 mL per hive during an experimental period of 24 days.

Oxalic acid, a crystallized substance, is naturally found in abundance in the composition of many plants36, a treatment of first choice for varroasis control throughout Europe37. This organic compound reports an effectiveness of more than 95 % in the phoretic phase of the mite38, but has no effect against mites in operculate brood39. Compared to formic acid, oxalic acid is not affected by the environmental temperature at the moment of its application, but cases of hive losses or decrease in brood levels due to overdosage have been reported40. Various methodologies have been described regarding the application of oxalic acid, the most commonly used being spraying, in combination with sugar syrup on the bees or by means of evaporation crystals with heat41.

Aromatic plants and essential oils. Over the centuries, numerous plants have been explored as a source of alternative medicine, and nowadays botanical insecticides play a very important role in world agriculture due to their acaricidal, fungicidal and herbicidal effects, among others42. In this same context, EOs, formed by cyclic hydrocarbons and derivatives of alcohol, aldehyde or esters are extracts of volatile herbs and spices, have played an important role against the attack of bacteria, fungi or insects43. They have been studied mainly in veterinary medicine through the use of natural additives44, being an option in cattle feed, modifying ruminal fermentation and mitigating enteric methane emissions45.

The use of natural substances in beekeeping through the use of aromatic plants and/or OE as an alternative method of controlling various pathogens46 has generated a beneficial impact due to the bioactive molecules (terpenes, terpenoids, phenylpropanoids and others) that they possess, in addition to minimizing negative effects on the environment47 and making them compatible with the production of organic food, generating greater acceptance by beekeepers and the general public48.

Thymol, from the Thymus vulgaris plant, has become a highly effective acaricide treatment against V. destructor due to its phenolic compounds49. At present, it has been used in the form of crystals and different methods, such as evaporation tablets, gels, mainly a synergy between combinations of EO based on eucalyptus, mint and camphor, with results of more than 90 % mortality of mites50.

Similarly, EOs of various botanical species nowadays show similar or superior results to thymol, but they can be fluctuating because they are products of variable composition51 and depend on factors such as temperature, methodology and extraction of active compounds, geographical area, among others52.

Therefore, it is of utmost importance to develop effective supply systems, as well as frequent and optimal dosages to determine the optimum moment of application53 and to use an integrated phytotherapeutic management against varroasis, which alternates EOs such as garlic (Allium sativum)54, oregano (Origanum vulgare)51, laurel (Laurus nobilis)55, neem (Azadirachta indica), lemon grass (Cymbopogon spp.)56, among others, whose results are efficient.

Recently in Mexico, beekeepers in the southern part of the country have reported a procedure that has allowed partial control of V. destructor infestations, based on the use of smoke from plants and/or nuts endemic to the region generated by the fumigator, with an average efficacy of 41%, which leads to the conclusion that it can contribute as an alternative to reduce infestation levels when used on a routine basis57.

Use of dehydrated botanical extracts and inert powders. The use of millings has been little studied in comparison to other types of methodologies to control V. destructor mites. Over the years, it has been observed that they work once they adhere to the tarsal pads of the mites, preventing or hindering their attachment to the bee body58. The use of inert powders has shown efficacy in mite dropping59. For this reason, sugar dusting has been mainly used, which is associated with direct stimulation of the hygienic behavior of worker bees, leading to rapid and effective mite dropping60. However, recently the use of powdered thymol on brood frame heads has been used at different doses, generating different percentages of efficacy in mortality and mite dropping. Chiesa & D'Agaro61 used 20 g of powdered thymol and observed values of over 90% efficacy. Similarly, they sprinkled 24 g of thymol with sugar, registering an efficacy of 94 %53, compared to those who used 30 g of thymol mixed with sugar, reporting an efficacy of 89.9 %. Tananaki et al.62 compared the efficacy of mite mortality at a dose of 20 g of powdered thymol against 12.5 g of thymol in gel base, observing that the milling had an efficacy of 64.5 % while the gel base had 65.4 %; they did not observe significant differences. Thus, gel-based thymol slightly decreased queen population and posture.

El-Roby & Darwish63 mixed various plant products that were subsequently used in grindings, each mixed with four parts of sugar (1:4), administering 40 g per colony, observed values higher than 90 % efficacy. In addition, Varroa sp. infestations in the bee brood decreased by more than 80 %. Similarly, the amount of mites fallen 24 h after dusting treatments showed a reduction of up to 70 %, this result was variable depending on the type of dusting.

Conclusion

Varroasis represents a strong challenge for beekeeping in the national context due to the resistance of this mite, generated by the excessive use and lack of training in the use of synthetic acaricides. In addition, the presence of chemical residues in wax and honey drastically affects the safety and quality of products derived from beehives, in conjunction with the harmful impact on public health. It is of utmost importance to strengthen natural alternative treatments such as the use of different plants, in the form of essential oils, extracts, leaves or dried fruits and grindings. These products have shown favorable results under field and laboratory conditions in terms of mortality and drop of V. destructor mites, as well as increased levels of queen oviposition and honey production. However, further evaluations are needed to know the specific mode of action of each bioactive compound, as well as the optimal dose so ́ that these can be used as alternatives against V. destructor. Finally, the development of organic products in search of mitigating negative effects and converting them into an environmentally friendly product, gives added value to the producers who use them.

REFERENCES

1. Sajid ZN, Aziz MA, Bodlah I, Rana RM, Ghramh HA, Khan KA. Efficacy assessment of soft and hard acaricides against Varroa destructor mite infesting honeybee (Apis mellifera) colonies, thro-ugh sugar roll method. Saudi J Biol Sci 2020;27(1) :53-9. DOI: https://doi.org/10.1016/j.sjbs.2019.04.017Links ]

2. Rasool K, Ahad I, Rasool R. Efficacy of various botanicals and chemicals on ectoparasitic mite, Varroa destructor feeding on European honey bee, Apis mellifera. J Entomol Zool Stud 2017;5 (5):589-95. [ Links ]

3. Magaña-Magaña MA, Leyva-Morales CE. Costos y rentabilidad del proceso de producción apícola en México. Contad Adm 2011;(235):99-119. DOI: https://doi.org/10.22201/fca.24488410e.421Links ]

4. El-Nagar AE, Yousif-Khalil SI, El-Shakaa SMA, Helaly WM. Efficiency of some botanicals against Varroa destructor infesting honeybee colonies and their impact on brood rearing activity and clover honey yield. Zagazig J Agric Res 2019;46(2): 367-75. DOI: https://doi.org/10.21608/ZJAR.2019.33392Links ]

5. Yousif-Khalil SI, Shalaby AA. Pollinating activity of honeybee Apis mellifera L. on sunflower as influenced by some insecticidal residues. Zagazig J Agric Res 1992;19(2):909-22. [ Links ]

6. Tapia-González JM, Alcazar-Oceguera G, Macías-Macías JO, Contreras-Escareño F, Tapia-Rivera JC, Chavoya-Moreno FJ, et al. Nosemosis en abejas melíferas y su relación con factores ambientales en Jalisco, México. Rev Mex Cienc Pecu 2017;8(3):325-30. DOI: https://doi.org/10.22319/rmcp.v8i3.4510Links ]

7. Ruíz-Flores A, Ramírez-Hernández E, Maldonado-Simán E, Palafox-Guillén J, Ochoa-Torres E, López-Ordaz R. Incidencia y nivel de infestación por varroasis en abejas (Apis mellifera) en el laboratorio de identificación y diagnóstico apícola de 2002 a 2006. Rev Chapingo Ser Cienc For Ambient 2012;18(2):175-82. DOI: https://doi.org/10.5154/r.rchscfa.2011.03.023Links ]

8. Roetschi A, Berthoud H, Kuhn R, Imdorf A. Infection rate based on quantitative real-time PCR of Melissococcus plutonius, the causal agent of European foulbrood, in honeybee colonies before and after apiary sanitation. Apidologie 2008;39 (3):362-71. DOI: https://doi.org/10.1051/apido:200819Links ]

9. Ellis J, Munn P. The worldwide health status of honeybees. Bee World 2005; 86(4):88-101. DOI: https://doi.org/10.1080/0005772X.2005.11417323Links ]

10. Chen YP, Siede R, Maramorosch K. Honey bee viruses. Adv Virus Res 2007;70:33-80. DOI: https://doi.org/10.1016/S0065-3527(07)70002-7Links ]

11. Maldonado-González AP, Tenorio-Beltrán LE, Vázquez-Romero YI, Villalobos-Rodríguez MA, Velázquez-Ordóñez V, Ortega-Santana C, et al. Varroasis: environmental and economic approach. A review. Rev Electrón Vet 2017;18(9):1-12. [ Links ]

12. Martínez Puc JF, Medina Medina LA, Catzín Ventura GA. Frecuencia de Varroa destructor, Nosema apis y Acarapis woodi en colonias manejadas y enjambres silvestres de abejas (Apis mellifera) en Mérida, Yucatán, México. Rev Mex Cienc Pecu 2011;2(1):25-38. [ Links ]

13. Tapia-González JM, Alcazar-Oceguera G, Macías-Macías JO, Contreras-Escareño F, Tapia-Rivera JC, Petukhova T, et al. Varroosis en abejas melíferas en diferentes condiciones ambientales y regionales de Jalisco, México. Ecosistemas y Recur Agropecuarios 2019;6(17):243-51. DOI: https://doi.org/10.19136/era.a6n17.2018Links ]

14. Martínez-Cesáreo M, Rosas-Córdoba J, Prieto-Merlos D, Carmona-Gasca A, Peña-Parra B, Ávila-Ramos F. Presencia de Varroa destructor, Nosema apis y Acarapis woodi en abejas (Apis mellifera) de la región oriente del Estado de México. Abanico Vet 2016;6(2):30-8. DOI: https://doi.org/10.21929/abavet2016.62.3Links ]

15. Guzman-Novoa E, Emsen B, Unger P, Espinosa-Montaño LG, Petukhova T. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.). J Invertebr Pathol 2012;110(3):314-20. DOI: https://doi.org/10.1016/j.jip.2012.03.020Links ]

16. Carmenate H, Botta E. Varroasis: peligrosa enfermedad de la abeja melífera (ii). diagnóstico y control. Fitosanidad 2004;8(2):47-55. [ Links ]

17. Magaña-Magaña MA, Sanginés-García JR, Lara-Lara PE, Salazar-Barrientos LL, Leyva-Morales CR. Competitividad y participación de la miel mexicana en el mercado mundial. Rev Mex Cienc Pecu 2017;8(1):43-52. DOI: https://doi.org/10.22319/rmcp.v8i1.4304Links ]

18. Nazzi F, Le Conte Y. Ecology of Varroa destructor, the major ectoparasite of the Western honey bee, Apis mellifera. Annu Rev Entomol 2016;61: 417-32. DOI: https://doi.org/10.1146/annureven to-010715-023731 [ Links ]

19. Chihu Amparán D, Rojas Avalos LM, Rodríguez Dehaibes SR. Presencia en Veracruz, México, del ácaro Varroa jacobsoni, causante de la varroasis de la abeja melífera (Apis mellifera L.). Tec Pecu Méx 1992;30(2):133-5. DOI: https://doi.org/10.22319/RMCP.V30I2.3607Links ]

20. Espinosa-Montaño LG. Varroa destructor A. Imagen Veterinaria 2004;4(2):16-21. [ Links ]

21. Koleoglu G, Goodwin PH, Reyes-Quintana M, Hamiduzzaman MM, Guzman-Novoa E. Varroa destructor parasitism reduces hemocyte concentrations and prophenol oxidase gene expression in bees from two populations. Parasitol Res 2018;117(4):1175-83. DOI: https://doi.org/10.1007/s00436-018-5796-8Links ]

22. Le Conte Y, Ellis M, Ritter W. Varroa mites and honey bee health: can varroa explain part of the colony losses? Apidologie 2010;41(3):353-63. DOI: https://doi.org/10.1051/apido/2010017Links ]

23. Medina-Flores CA, Guzmán-Novoa E, Aréchiga-Flores CF, Aguilera-Soto JI, Gutiérrez-Piña FJ. Efecto del nivel de infestación de Varroa destructor sobre la producción de miel de colonias de Apis mellifera en el altiplano semiárido de México. Rev Mex de Cienc Pecu 2011;2(3):313-7. [ Links ]

24. Islam N, Amjad M, Ehsanul Haq, Stephen E, Naz F. Management of Varroa destructor by essential oils and formic acid in Apis Mellifera Linn. colonies. J Entomol Zool Stud 2016;4(6):97-104. [ Links ]

25. Eshbah HM, Mohamed AA, Hassan AR, Mahmoud ME, Shaban MM. Efficiency of feeding honey bee colonies, Apis mellifera L., with mixture of natural products and sugar syrup on brood and adult population. Sci Agric 2018;21(1):14-8. DOI: https://doi.org/10.15192/PSCP.SA.2018.21.1.1418Links ]

26. Koumad II, Berkani JO. Evaluación de la eficacia de cuatro plantas medicinales como fumigantes contra Varroa destrutor en Argelia. Arch Zootec 2019;68(262):284-92. DOI: https://doi.org/10.21071/az.v68i262.4148Links ]

27. Huamán N, Silva G. Efecto acaricida de aceite esencial de molle (Schinus molle) en el control de Varroa destructor en colmenas de abejas (Apis mellifera). Agroind Sci 2020;10(2):145-51. DOI: http://doi.org/10.17268/agroind.sci.2020.02.04Links ]

28. Neira M, Heinsohn P, Carrillo R, Báez A, Fuentealba J. Efecto de aceites esenciales de lavanda y laurel sobre el ácaro Varroa destructor Anderson & Truemann (Acari: Varroidae). Agric Téc 2004;64(3):238-44. DOI: https://doi.org/10.4067/S0365-28072004000300003Links ]

29. Rosenkranz P, Aumeier P, Ziegelmann B. Biology and control of Varroa destructor. J Invertebr Pathol 2010;103 (Suppl 1): S96-119. DOI: https://doi.org/10.1016/j.jip.2009.07.016Links ]

30. Calderón RA, Ramírez M, Ramírez F, Villalobos E. Efectividad del ácido fórmico y el timol en el control del ácaro Varroa destructor en colmenas de abejas africanizadas. Agron Costarricense 2014;38(1):175-88. DOI: https://doi.org/10.15517/rac.v38i1.15165Links ]

31. Aydin L, Güleg¨en E, Çakmak I, Girisgin AO. The occurrence of Varroa destructor Anderson and Trueman, 2000 on honey bees (Apis mellifera) in Turkey. Turk J Vet Anim Sci 2007;31(3):189-91. [ Links ]

32. Gunes N, Aydin L, Belenli D, Hranitz JM, Mengilig S, Selova S. Stress responses of honey bees to organic acid and essential oil treatments against varroa mites. J Apic Res 2017;56(2):175-81. DOI: https://doi.org/10.1080/00218839.2017.1291229Links ]

33. Imdorf A, Bogdanov S, Ibañes Ochoa R, Calderone NW. Use of essential oils for the control of Varroa jacobsoni oud. in honey bee colonies. Apidologie 1999;30(2-3):209-28. DOI: https://doi.org/10.1051/apido:19990210Links ]

34. Mondet F, Goodwin M, Mercer A. Age-related changes in the behavioural response of honeybees to Apiguard(r), a thymol-based treatment used to control the mite Varroa destructor. J Comp Physiol 2011;197(11):1055-62. DOI: https://doi.org/10.1007/s00359-011-0666-1Links ]

35. Bolli HK, Bogdanov S, Imdorf A, Fluri P. De zur wirkungsweise von ameisensäure bei Varroa jacobsoni oud und der honigbiene (Apis mellifera L.). Apidologie 1993;24(1):51-7. DOI: https://doi.org/10.1051/apido:19930106Links ]

36. Lide R. Handbook of chemistry and physics. 87th edition. The Chemical Rubber Co. Cleveland. United States of America;2006. 2712 p. [ Links ]

37. Nanetti A, Büchler R, Charrière J, Friesd I, Helland S, Imdorf A, et al. Oxalic acid treatments for varroa control (a review). Apiacta 2003;38(1):81-7. [ Links ]

38. Bogdanov S, Charrière JD, Imdorf A, Kilchenmann V, Fluri P. Determination of residues in honey after treatments with formic and oxalic acid under field conditions. Apidologie 2002;33:399-409. DOI: https://doi.org/10.1051/apido:2002029Links ]

39. Planinc AGI. Dynamics of falling Varroa mites in honeybee (Apis mellifera) colonies following oxalic acid treatments. Acta Vet Brno 2004;73:385-91. DOI: https://doi.org/10.2754/avb200473030385Links ]

40. Gregorc A, Planinc I. Acaricidal effect of oxalic acid in honeybee (Apis mellifera) colonies. Apidologie 2001;32(4):333-40. https://doi.org/10.1051/apido:2001133Links ]

41. Rademacher E, Harz M. Oxalic acid for the control of varroosis in honey bee colonies -a review. Apidologie 2006;37(1):98-120. DOI: https://doi.org/10.1051/apido:2005063Links ]

42. González-Gómez R, Otero-Colina G, Villanueva-Jiménez JA, Pérez-Amaro JA, Soto-Hernández RM. Azadirachta indica toxicity and repellence of Varroa destructor (Acari: Varroidae). Agrociencia 2006;40(6):741-51. [ Links ]

43. Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009 ;96(4):363-75. DOI: https://doi.org/10.1007/s10482-009-9364-1Links ]

44. Delgadillo-Ruiz L, Bañuelos-Valenzuela R, Gallegos-Flores P, Echavarría-Cháirez F, Meza-López C, Gaytán-Saldaña N. Modificación de la fermentación ruminal in vitro para mitigación de metano mediante la adición de aceites esenciales de plantas y compuestos terpenoides. Abanico Vet 2021;11:e107. DOI: https://doi.org/10.21929/abavet2021.9Links ]

45. Wang J, Liu M, Wu Y, Wang L, Liu J, Jiang L, et al. Medicinal herbs as a potential strategy to decrease methane production by rumen microbiota: a systematic evaluation with a focus on Perilla frutescens seed extract. Appl Microbiol Biotechnol 2016;100(22):9757-71. DOI: https://doi.org/10.1007/s00253-016-7830-zLinks ]

46. Solarzano-Santos F, Miranda-Novales MG. Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol 2012;23(2):136-41. DOI: https://doi.org/10.1016/j.copbio.2011.08.005Links ]

47. Saadel Z, Hussien R, Saher F, Ahmed Z. Acaricidal activities of some essential oils and their monoterpenoidal constituents against house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J Zhejiang Univ Sci 2006;7(2): 957-62. DOI: https://doi.org/10.1631/jzus.2006.B0957Links ]

48. Albo GN, Henning C, Reynaldi FJ, Ringuelet J, Cerimele E. Dosis letal media (DL50) de algunos aceites esenciales y biocidas efectivos para el control de Ascosphaera apis en Apis mellifera L. Rev Elenctron Vet 2010;11(10):1-12. [ Links ]

49. Damiani N, Gende LB, Bailac P, Marcangeli JA, Eguaras MJ. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Parasitol Res 2009;106(1):145-52. DOI: https://doi.org/10.1007/s00436-009-1639-yLinks ]

50. Beyer M, Junk J, Eickermann M, Clermont A, Kraus F, Georgesc C, et al. Winter honey bee colony losses, Varroa destructor control strategies, and the role of weather conditions: Results from a survey among beekeepers. Res Vet Sci 2018;118:52-60. DOI: https://doi.org/10.1016/j.rvsc.2018.01.012Links ]

51. Sabahi Q, Gashout H, Kelly PG, Guzman-Novoa E. Continuous release of oregano oil effectively and safely controls Varroa destructor infestations in honey bee colonies in a northern climate. Exp Appl Acarol 2017;72:263-75. DOI: https://doi.org/10.1007/s10493-017-0157-3Links ]

52. Umpiérrez ML, Santos E, Mendoza Y, Altesor P, Rossini C. Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitol Res 2013;112(2):3389-400. DOI: https://doi.org/10.1007/s00436-013-3517-xLinks ]

53. Melathopoulos AP, Pernal SF, Moller E, Baumgartner W, Guzman-Novoa E. A spring evaluation of thymol formulated in a sucrose dust for the control of Varroa destructor, a parasite of the honey bee (Apis mellifera) in Alberta, Canada. Sci Bee Cult 2010;2(2):2-6. [ Links ]

54. Ramzi H, Ismaili MR, Aberchaneb M, Zaanoun S. Chemical characterization and acaricidal activity of Thymus satureioides C. & B. and Origanum elongatum E. & M. (Lamiaceae) essential oils against Varroa destructor Anderson & Trueman (Acari: Varroidae). Ind Crops Prod 2017;108:201-7. DOI: https://doi.org/10.1016/j.indcrop.2017.06.031Links ]

55. Damiani N, Fernández NJ, Porrini MP, Gende LB, Álvarez E, Buffa F, et al. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal a ctivity. Parasitol Res 2014;113(2):701-9. DOI: https://doi.org/10.1007/s00436-013-3698-3Links ]

56. Sabahi Q, Hamiduzzaman MM, Barajas-Pérez JS, Tapia-Gonzalez JM, Guzman-Novoa E. Toxicity of anethole and the essential oils of lemongrass and sweet marigold to the parasitic mite Varroa destructor and their selectivity for honey bee (Apis mellifera) workers and larvae. Psyche 2018:a6196289. https://doi.org/10.1155/2018/6196289Links ]

57. May-Itza W de J, Medina Medina LA. Eficacia del humo de frutos de Guazuma ulmifolia (Sterculiaceae) y vapores de timol para el control de Varroa destructor infestando abejas africanizadas. Rev Mex de Cienc Pecu 2019;10(3):778-88. DOI: https://doi.org/10.22319/rmcp.v10i3.4810Links ]

58. Fakhimzadeh K. The effects of powdered sugar varroa control treatments on Apis mellifera colony development. J Apic Res 2001;40(1-2):105-9. DOI: https://doi.org/10.1080/00218839.2001.11101058Links ]

59. Stanimirovic Z, Aleksic N, Stevanovic J, Cirkovic D, Mirilovic M, Delic N, et al. The influence of pulverised sugar dusting on the degree of infestation of honey bee colonies with Varroa destructor. Acta Vet 2011;61(2-3):309-25. DOI: https://doi.org/10.2298/AVB1103309SLinks ]

60. Ellis AM, Hayes GW, Ellis JD. The efficacy of dusting honey bee colonies with powdered sugar to reduce varroa mite populations. J Apic Res 2009;48(1):72-6. DOI: https://doi.org/10.3896/IBRA.1.48.1.14Links ]

61. Chiesa F, D'Agaro M. Effective control of varroatosis using powdered thymol. Apidologie 1991;22(1):135-45. DOI: https://doi.org/10.1051/apido:19910206Links ]

62. Tananaki C, Goras G, Huggett N, Karazafiris E, Dimou M, Thrasyvoulou A. Evaluation of the impact of Exomite Pro(tm) on Varroa mite (Varroa destructor) populations and honeybee (Apis mellifera) colonies: efficacy, side effects and residues. Parasitol Res 2014;113(4):1251-9. DOI: https://doi.org/10.1007/s00436-013-3739-yLinks ]

63. EL-Roby ASMH, Darwish MG. Biological activity of certain natural products against Varroa destructor (Acari: Varroidae) and their selectivity against Apis mellifera (Hymenoptera: Apidae). JPPM. 2018;5(3):67-76 [ Links ]

ID of the article: 096/JSAAS/2021

Funding source The authors wish to acknowledge the financial support of the Consejo Nacional de Ciencia y Tecnología (CONACYT) to the first author for his master's degree studies.

Conflicts of interest The authors wish to express that there is no financial relationship that they have that could give rise to a conflict of interest in relation to the published article.

Acknowledgements The authors wish to express their gratitude to CONACYT for the scholarship granted to the first author to pursue master's studies. They also wish to express their gratitude to the Universidad Autónoma de Tamaulipas for allowing the first author to pursue his master's degree.

Ethical considerations Since the work performed is a literature review, there was no need to work with animals in vivo.

Authors' contribution in the article The authors express that the work in the collection and review of literature was in charge of the first author. Authors Amador Silva, Daniel López and Sonia Patricia Castillo collaborated intellectually with the scientific advice. Author Juan Carlos Martínez worked more closely with the first author and is responsible for the publication of the article.

Editor's Note: Journal of the Selva Andina Animal Science (JSAAS) remains neutral with respect to jurisdictional claims published on maps and institutional affiliations.

Received: June 01, 2021; Revised: August 01, 2021; Accepted: September 01, 2021

*Contact address: Autonomous University of Tamaulipas. Faculty of Engineering and Sciences. Adolfo López Mateos University Center. Knowledge Management Center Building, 4th floor. Ciudad Victoria, Tamaulipas. C.P. 87149. Mexico. Juan Carlos Martínez-González E-mail address: jmartinez@docentes.uat.edu.mx

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons