SciELO - Scientific Electronic Library Online

 
vol.7 número2Fibrosarcoma en ovinos de la zona altiplánica del Perú: reporte de casos índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Journal of the Selva Andina Animal Science

versão impressa ISSN 2311-2581

J.Selva Andina Anim. Sci. vol.7 no.2 La Paz  2020

 

https://doi.org/10.36610/j.jsaas.2020.070200107x

Review Article

 

Bacteriófagos: aliados para combatir enfermedades bacterianas en acuicultura. Un primer punto de partida en la acuicultura ecológica

 

Bacteriophages: allies to combat bacterial diseases in aquaculture. A first starting point in organic aquaculture

 

 

Saucedo-Uriarte José Américo1*, Honorio-Javes César Eduardo2, Vallenas-Sánchez Yhann Pool Angelo2, Acuña-Leiva Alex1

1Livestock Research Institute and Biotechnology. Toribio Rodríguez de Mendoza National University of Amazonas. University Campus: C. Higos Urco N ° 342-350-356. Chachapoyas 01001, Perú. Tel: 041-477694 / DGAYRA: 041-478821 alex.acuna@untrm.edu.pe
2Antenor Orrego Private University. Trujillo: Av. América Sur 3145, urb. Monserrate. Piura: North Sector, Parcela 03 (road to Los Ejidos) Tel: (073) 607777 extension 1000 - 1001 Postal code: 13007. Trujillo, La Libertad, Perú. chonorioj1@upao.edu.pe, angelovsanchez@gmail.com

*Contact address: Livestock Research Institute and Biotechnology. Toribio Rodríguez de Mendoza National University of Amazonas. University Campus: C. Higos Urco N ° 342-350-356. Chachapoyas 01001, Perú. Tel: 041-477694 / DGAYRA: 041-478821

José Américo Saucedo-Uriarte
E-mail address: saucedouriarte@gmail.com

Record from the article.
Received April 2020.
Returned June 2020.
Accepted August 2020.
Available online, October 2020.

ID of article: 072/JSAAS/2020

J. Selva Andina Anim. Sci. 2020; 7(2):107-121

 

 


Resumen

La acuicultura ha tenido un gran crecimiento debido a la mayor demanda de productos acuícolas, sin embargo, se ve amenazada por la presencia de bacterias resistentes a los antibióticos que generan gran mortalidad y pérdidas económicas. Una alternativa para combatir estos problemas es el uso de bacteriófagos. Los cuales son virus que infectan en el interior de una bacteria y la lisan. En este artículo se revisa el uso de bacteriófagos como alternativa al uso de antibióticos para combatir infecciones bacterianas en la acuicultura. Los bacteriófagos son aislados de mar, ríos, lagos, aguas residuales y muestras de tejido, asimismo estos virus presentan mejor desempeño al suministrarse en el agua respecto al alimento. La posibilidad de eliminar las infecciones provocadas por bacterias patógenas en sistemas acuícolas con cocteles de fagos está siendo un fenómeno notable, debido a que es rentable, ecológico, y seguro tanto para la acuicultura, el ser humano y animales. Sin embargo, existe poca regulación en cuanto a su uso y hay controversia en la fago resistencia. En ese sentido, antes de la aplicación de los fagos a nivel industrial, se necesitan más estudios que determinen ciertos estándares para lograr una mayor productividad, y beneficio económico, ofreciendo productos inocuos y ecológicos.

Palabras clave: Actividad acuícola, infección bacteriana, pérdidas económicas, bacteriófagos, biosanación, fago-resistencia, inocuidad ambiental, seguridad alimentaria.


Abstract

Aquaculture has had a great growth due to the greater demand for aquaculture products, however, it is threatened by the presence of bacteria resistant to antibiotics that generate high mortality and economic losses. An alternative to combat these problems is the use of bacteriophages. Which are viruses that infect inside a bacterium and lyse it. This article reviews the use of bacteriophages as an alternative to the use of antibiotics to combat bacterial infections in aquaculture. Bacteriophages are isolated from the sea, rivers, lakes, sewage, and tissue samples, and these viruses also perform better when supplied in water than in food. The possibility of eliminating the infections caused by pathogenic bacteria in aquaculture systems with phage cocktails is being a remarkable phenomenon because it is profitable, ecological, and safe for both aquaculture, humans, and animals. However, there is little regulation regarding its use and there is controversy in phage resistance. In this sense, before the application of phages at an industrial level, more studies are needed to determine certain standards to achieve greater productivity and economic benefit, offering safe and ecological products.

Keywords: Aquaculture activity, bacterial infection, economic losses, bacteriophages, bio-healing, phage-resistance, environmental safety, food safety.


 

 

Introduction

In 1917 phages or bacteriophages were discovered1-3 and 91 years ago they were used as therapeutic agents4, after that, it was discovered that their activity had more effect in vitro compared to in vivo, for Vibrio cholerae5. However, the detail study of bacteriophages was abandoned, with the appearance of cheaper broad-spectrum antibiotics, but discovering that its prolonged use generates the appearance of multi-resistant bacteria to antibiotics and leads to large economic losses, again, the use of natural origin bacteriophages has returned6,7.

Aquaculture is one of the industries that is known worldwide as an economy for improve the sector of disadvantaged countries8. It has been seen average production growth of 9.2% per year since 1970 worldwide9. In 2015 projected world fish production at 164 million tons for this 202010, but it is expected to exceed that projection because in 2018 the FAO reported that 156 million tons were intended for human consumption11.

Aquaculture is the sector that currently has the highest growth in the food industry, however, intensive rearing looks threat by the appearance of bacterial diseases caused by Aeromonas, Pseudomonas, Vibrios and Flavobacterium, which are the cause of mortality and economic losses12-15. In 1997 estimated a loss of 3 billion per year globally and recently, global economic losses are estimated from 1.05 to 9.58 billion dollars a year in aquaculture16,17. For this reason, antibiotics are used as a treatment, however, studies reveal that the excessive and inappropriate use of these compounds have caused bacterial resistance to antibiotics, presence of antibiotic residues costs in aquaculture products and by-products, sediment, wild fish, in addition, wastewater or discharges from aquaculture production centers play an important role in the transfer of resistance genes18-21.

Faced with this situation, different alternatives such probiotics22, prebiotics23-26, phytobiotics27,28 and bacteriophages have been proposed to fight those diseases29-31, additionally, these show synergism when are used together with probiotics and show greater effectiveness than them, by reducing pathogenic bacteria32-34. The use of bacteriophages to prevent bacterial infections in aquaculture could help in aquaculture healthiness and to provide a product safe for the consumer, without fear of consuming food with antibiotic residues.

For this reason, this review postulates employment of mixed phage cocktails as an alternative to the use of antibiotics in aquaculture.

 

Development

Bacteriophages or phages are highly specific viruses that infect, be replicate in bacterial cells without invading other cells and they can have different infection cycles32,35,36.

These viruses are found in large numbers in the environment and are the natural predators of bacterias37. Also, phages have different infective cycles within the bacteria: infection lytic, lysogenic, pseudo-lysogenic and chronic38,39.

Lytic infection is the only one that does not allow bacterial multiplication, while the others cycles of infection allow it, when these are in low population density. According to the cycle of infection, phages can be classified as virulent or lytic and lysogenic or temperate. Furthermore, current approaches to phage therapy in aquaculture are oriented to the use of lytic phages, which belong to the Caudovirals that include the families Myoviridae, Podoviridae, and Siphoviridae40.

Phage infection begins with recognition of specific receptors on the bacterial membrane and the consequent adhesion of the virus, after that, the phage introduces its genome into the bacterium and later it is replicated within her. Finally, release holins and endolysins (diverse group of small proteins produced by bacteriophages dsDNA) whose function is to form pores in the membrane, trigger and control degradation of the host cell wall at the end of the cycle lytic, causing cell lysis and release of new phages40,41.

Phages in aquaculture. It has been justified that the phages belonging to the families Myoviridae, Podoviridae and Siphoviridae are part of the intestine microbiome of the fish, being in greater more temperate phages than lytic ones42. The phages used in various studies were isolated from the sea, rivers, lakes, sewage and tissue samples (table 1 and 2), so it is reasonable to that phage isolated from liquid media perform better by supplying them in the water than through food, the advantage of using them in water is that it controls bacteria in the environment (water), of the animals in production43,44.

Table 1 In vitro studies of bacterial phages that affect aquaculture

Likewise, the time lapse between infection and treatment, the dose used and the route of administration influence the results (table 2). Although they have been used in food43, intraperitoneally and immersed, the literature indicates that the best protective effects are observed when applied intraperitoneally, however, the most practical way in commercial production is by immersion or in feed, but the first form of application is the one that allows to obtain the best results (table 2). However, phages are not part of the formulation of diet so they do not go through the extrusion process, but rather the food is immersed in phages33.

Table 2 Effects of the use of phages in fish

1IT: intervalo de tiempo entre infección y tratamiento, 2I.P.: intraperitoneal, 3pellet impregnado con fagos

On the other hand, individual phages have been studied, phage cocktails and mixed phage cocktails. The difference between individual phages and phages cocktails is in the virus variety, it is considered as a cocktail from two phages, independently of belonging or not to the same family. Likewise, the difference between cocktails and mixed cocktails lies in the variety of host bacteria, where considered as a mixed cocktail from two genres bacterial.

There is extensive information on phage work individual than in cocktails, although there are enough hundreds of phage studies of Aeromonas, Pseudomonas and Vibrios, so we already have mixed cocktails (table 1 and 2). The best way to start using phages in commercial breeding centers is by mixed lithic phage cocktails, due to the high specificity of phages and the difficulty of know all the bacterial strains present in a production center, either to use them as growth promoters or as a treatment for diseases33.

Finally, entrepreneurial oriented jobs are needed. use of mixed lithic phage cocktails as growth promoters and the effects on productive parameters, nutrient digestibility and development of intestinal villi. In addition, phages have confirmed synergism when be used with probiotics and be more effective than these by reducing pathogenic bacteria in other animal species32,33. For that reason, you should make a comparison and combination of the phages with other alternatives, such as probiotics, prebiotics, essential oils and organic acids as performed in other animal species32,34.

Phage-resistance. Bacteriophages and bacteria have a predator and prey relationship since both exist, which led to a coevolution, where bacteria have found strategies to elude their predators and phages forms of neutralize these strategies. There is a controversy on phage resistance43,45,49-51 and its various mechanisms have been studied such as: production of polysaccharides, modification of phage receptors, loss of phage receptors, CRISPR-Cas system and apoptosis, which have a genetic nature52.

Despite these bacterial strategies, the modification and loss of phage receptors serve to prevent phage adhesion, but it has a high opportunity cost as it reduces their multiplication and phages can change their tail fibers to find the newly altered receptors58. Regarding the production of polysaccharides, bacteria use them to prevent adhesion of phages, however, these can produce depolymerases that degrades give59,60.

The CRISPR-Cas system is one of the most studied since it is part of the adaptive immune system of bacteria and use it to degrade the Phage DNA, however, some phages can protect your genetic material with a protective cover "core type" theory61. Finally, to fight phage-resistance you have mixed phage cocktails and quorum quenching56,62,63.

Current status of phages in aquaculture. The economic losses associated with the treatment of infections bacterial, has prompted scientists to seek new treatment alternatives with strategies sustainable. One of them is phage cocktail therapy, known to be an ecological alternative that helps in the prevention and control of pathogenic bacteria diseases64. Phage cocktails provide the means to evade resistance to the presence of a single phage and allow the treatment of diverse pathogens at the same time65,66. For example, a study showed that using two and three phage cocktails is more efficient than using a single one, in Vibrio control in aquaculture64. By adding 75 µg / mL of Vplys60 (encoded endolysin enzyme by phages) inhibits the formation of biofilms and reduces the bacterial population, which increases the survival rate ofArtemia Franciscana and reduces the burden of Vibrio67. In a pilot study, were able to determine that the use of phage cocktail is a safe and viable way to fight Vibrio infections (Vibrio alginolyticus, V. cyclitrophicus and V. splendidus) in sea cucumber (Apostichopus japonicus)68. Scientific reports indicate that the use of phages in aquaculture could reduce pathogen levels and not cause harmful damage to the structure of the community microbial quality of the gastrointestinal tract of the individual indirectly and indirectly improve productivity.

Regulations on the use of phages in aquaculture. Phage therapy is being limited by the lack of a regulatory framework that is specific and designed taking into account the nature of the bacteriophages69. Despite the attributes that it is considered bacteriophages as antimicrobials, present self-replication capabilities and features like self-restriction and are non-toxic70,71. This gives an overview that cannot be classified or regulated as antibiotics. In that sense, the limited knowledge and poor regulation led to classify them as substances that interfere with clinical trials72. Faced with this situation, in Europe, researchers are motivated to demand the adequate regulation that allow the generation of efficient treatments with the use of phages or bacteriophages73. A report indicates that no product based on phage is approved for use in humans, except in the countries that make up the Union of Soviet Socialist Republics. This is partly due to the lack of a regulatory framework and the limited availability of data on large-scale use magnitude72. However, its use is being approved for its application in agriculture by the Food and Drug Administration from the United States (FDA) and the United States Department of Agriculture (USDA for its acronym in English).

Commercial products. While the use of phage is not approved for use in humans, there are products aimed at improving the food safety or its application for pest reduction in agriculture.For example, the product whose trade name is Listex TM, composed mainly of Antilisteria monocytegenes phage P100. Another product is Biotector® created by Cheil Jedang Corporation, AgriphageTM for plant biocontrol, EcoShieldTM focused on Escherichia coli, are being commercialized74-77.

With regard to aquaculture, Aquaphage and Enviphage are projects funded by the European Union, in order to create a network of researchers for the development of phage therapy in aquaculture and determine the environmental effects caused by industrial use78,79. They were able to verify the effectivity of the bacteriophage Listex P100 in reducing of Listeria monocytogenes from the fillet surface of salmon and fresh catfish80,81. In European eel (Anguilla anguilla) organism tolerance to BAFADOR® was achieved, which stimulated the parameters of cellular and humoral immunity, and reducing post-experiment mortality57.

Advantages and disadvantages

Advantages. Bacteriophages are effective and specific because they act directly on the pathogenic agent and without negative impact on the fish’s health (intestinal flora) or human beings regarding antibiotics that destroy all flora65. They are considered of natural origin and this is translated as an organic product. After self reply are easy to isolate and spread82. The use is to combat gram positive pathogenic bacteria and gram negative83. Direct application with water or spray makes it easy to use84. The preparation of multiple phage components leads to being synergistic in cocktail. Its compatibility with food makes it easy to use. Cocktails can be used for therapy and bio-healing. No effect has been reported in use, which makes it viable and omnipotent products85. The cocktails are currently relatively cheap10,86.

Disadvantages or inconvenient of use. The use of phages in the treatment of bacterial infections requires exact identification of the bacterial species to be controlled, its phage application needs regulatory approvals. In this strategy, as with antibiotics in general, is the bacteria’s potential that can develop antibacterial drug resistance87. Resistance, even if it’s being used without prior consultation of the consumer regarding their acceptance. The genetic manipulation for the incorporation of genes into the cell leads to gene transfer which could generate pathogenicity and virulence factors10,88. Regarding the latter, scientists suggest choosing phages without the ability to genetic transmission or be modified to eliminate the natural process89,90.

 

Discussion

The application of phage therapy has been one of the better alternatives for the treatment of pathogenic bacterial infections. It is a viable alternative that can replace, in the not too distant future, to the antibiotics currently used in the aquaculture. Its use has been around for a century, which was first discovered1 and currently its application is helping to overlap the big health problems in aquaculture. Currently, scientists are working with repetitions Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based on a series of proteins (Cas) in order to identify adaptive immunity of bacteriophages. Example, in a study discovered a giant phage from Serratia that achieves to evade Type I CRISPR-Cas systems, but it was sensitive to type III immunity52. These tools could assist in identifying and creating phage cocktails for applicability purposes in the treatment and control of bacterial infections. In that sense, phage therapy could be an alternative method to reduce overuse of antibiotics in aquaculture. By reducing the infections could be improved production by better feed conversions and higher weight gain and obtain a better profit at the end the process.

To obtain a successful and effective phage therapy, certain factors must be standardized and take into account such as post-application profitability, evaluate the impact on the environment in the short, medium and long-term, method of use or administration, age of animals, proper selection of pathogen to be treated and the level of affectation in the flock. Standardization of use should be evaluated by each altitudinal floor presented by the regions of the world and existing species. That is why, a monitoring allows early identification of diseases that can help counteract problems faster and leads to an acute more sustainable aquiculture over time.In that sense, it is important to have a balance of production and the maintenance of the integral health of the systems aquaculture.

For several decades, humans have used antibiotics to protect aquaculture systems from many diseases, but overuse of these has allowed bacteria to build resistance to such drugs. Due to the excessive use of antibiotics in aquaculture, may induce tolerance in animals to these drugs, affecting the health of living beings, and for them are considered emerging pollutants which are threats to ecosystems91,92. Therefore, it is essential to reduce the use of antibiotics and to apply other methods that are more viable in the social, environmental and economic aspect. Phage-therapy plays an important role as one of the best alternatives, since there are still no regulatory problems in their use in aquaculture. The possibility to fight pathogenic bacteria in aquaculture systems with phage cocktails is being a remarkable phenomenon, due to the fact that it is profitable, safe for aquaculture and for humans and animals that benefit from it. Although a certain degree of phage-resistance has been reported93,94, and that lysogenic phages can carry antibiotic resistance genes capable of bring resistance to a bacterial strain95, these negative effects may be negligible with respect to resistance developed by applying antibiotics always before and when the mechanisms behind are identified of the spread of these resistance genes to antibiotics and identify new genes sooner from becoming public health problems. Therefore, studies on the possible impacts on the environment such as material transfer genetics through transduction and disruption of the microbiome should be considered.

Although long-term experience in environmental therapies with phages is short, the majority of published investigations fail to highlight any risk that is associated with the interruption of the microbial community measured by phages. It is possible due to its host specificity. Despite its apparent safety, it is necessary to evaluate the effect of each commercial bacteriophage on the microbial community treated before use at the industrial level. This will identify the effectiveness and productive, social and environmental security.

 

Conclusions

Bacterial diseases cause mortality and economic losses in aquaculture, but the lithic phages are an alternative to fight the antimicrobial resistance. They are an alternative to antibiotics as growth promoters because they don’t affect beneficial microorganisms or the animal, and also don’t generate toxic residues.

Treatment with phage cocktails is currently considered a viable alternative to antibiotics for the treatment of bacterial infections in aquaculture. The use of bacteriophages in aquaculture does not affect either the fish or consumer’s intestinal health. However, there is a possibility of phage resistance in the future, for this before the application of bacteriophages on an industrial scale efficacy and safety should be analyzed under a regulatory framework.

The current scientific, social and economic context is directed to the use of bacteriophages in the aquaculture activity, but you must constantly update the phage’s libraries used because pathogens are constantly evolving and these may vary between countries and ecological and latitudinal zones. In that sense, more studies are needed to strictly indicate a healthy environment and food safety of products treated with phages for humans and thus be able to identify the ideal phage for specific cases in the aquaculture.

 

Funding Source

The authors declare that they did not receive any specific funding for this research.

 

Conflicts of interest

The present research has no conflicts of interests.

 

Acknowledgements

The authors are infinitely grateful to the Universidad Privada Antenor Orrego de Trujillo and the Livestock and Biotechnology Research Institute of the Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas for the support provided to carrying out this research.

 

Ethical aspects

The authors declare that the writing of the research is developed using carefully the integrated input course of previous studies in the literature and recognized them through the respective cited authors and the sources.

 

Cited literature

1. Twort FW. An investigation on the nature of ultra-microscopic viruses. Lancet 1915;186 (4814):1241-3. DOI: https://doi.org/10.1016/S0 140-6736(01)20383-3

2. D'Herelle F. On an invisible microbe antagonistic to dysentery bacilli. C R Acad Sci Paris 1917;165:373-5. DOI: https://doi.org/10.4161/bact.1.1.14941

3. Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014;5 (1):226-35. DOI: https://doi.org/10.4161/viru.25991

4. D'Herelle F. Studies upon Asiatic cholera. Yale J Biol Med 1929;1(4):195-219.

5. Adams MH. Bacteriophages [Internet]. CABI International. New York (& London), Inter-science Publishers: Angew Chem; 1951 [citado 26 de junio de 2020]. 19602204111. Recuperado a partir de: https://www.cabdirect.org/cabdirect/abstract/19602204111

6. Ronda C, Vázquez M, López R. Los bacteriófagos como herramienta para combatir infecciones en Acuicultura. AquaTIC 2016;18:3-10.

7. Flores Kossack C, Montero R, Köllner B, Maisey K. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish Shellfish Immunol 2020:98: 52-67. DOI: https://doi.org/10.1016/j.fsi.2019.12.093

8. Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio sp: A significant threat in aquaculture. Process Biochem 2020;94:213-23. DOI: https://doi.org/10.1016/j.procbio.2020.04.029

9. Kapetsky JM. Freshwater Fisheries From a Global Perspective 2001. Report produced under contract to the Information Program of the World Resources Institute, Washington DC; 2001.

10. Rao BM, Lalitha KV. Bacteriophages for aquaculture: are they beneficial or inimical. Aquaculture 2015;437:146-54. DOI https://doi.org/10.1016/j.aquaculture.2014.11.039

11. Organización de las Naciones Unidas para la Alimentación y la Agricultura. El estado mundial de la pesca y la acuicultura 2020. Versión resumida. La sostenibilidad en acción. Roma. 2020. DOI: https://doi.org/10.4060/ca9231es

12. Romalde JL. Héroes y villanos: bacterias asociadas al cultivo de moluscos. AquaTIC 2012;37:45-59.

13. Nicholson P, Mon-on N, Jaemwimol P, Tattiyapong P, Surachetpong W. Coinfection of tilapia lake virus and Aeromonas hydrophila synergistically increased mortality and worsened the disease severity in tilapia (Oreochromis spp.). Aquaculture 2019;520:734746. DOI: https://doi.org/10.1016/j.aquaculture.2019.734746

14. Shameena SS, Kumar K, Kumar S, Kumar S, Rathore G. Virulence characteristics of Aeromonas veronii biovars isolated from infected freshwater goldfish (Carassius auratus). Aquaculture 2020;518:734819. DOI: https://doi.org/10.1016/j.aquaculture.2019.734819

15. Myszka K, Olejnik A, Majcher M, Sobieszczańska N, Grygier A, Powierska Czarny J, et al. Green pepper essential oil as a biopreservative agent for fish-based products: Antimicrobial and antivirulence activities against Pseudomonas aeruginosa KM01. LWT 2019;108:6-13. DOI: https://doi.org/10.1016/j.lwt.2019.03.047

16. Subasinghe AP, Bondad Reontase MG, McGladdery SE. Aquaculture development, health and wealth. In: Subasinghe RP, Bueno P, Philips MJ, Hough C, McGladdery SE, Arthur JR, editors. Aquaculture in the third millennium technical proceedings of the conference on aquaculture in the third millennium. Bangkok, Thailand: NACA, Bangkok and FAO; 2001. p. 167-91.

17. Shinn AJ, Pratoomyot J, Bron J, Paladini G, Brooker E, Brooker A. Economic impacts of aquatic parasites on global finfish production. Global Aquaculture Advocate. 2015. p. 58-61.

18. Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 2014;22(1):36-41. DOI: https://doi.org/10.1016/j.tim.2013.11.001

19. Wang H, Ren L, Yu X, Hu J, Chen Y, He G, et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control 2017;80:217-25. DOI: https://doi.org/10.1016/j.foodcont.2017.04.034

20. Wu J, Mao C, Deng Y, Guo Z, Liu G, Xu, L, et al. Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. Mar Pollut Bull 2019;141:343-9. DOI: https://doi.org/10.1016/j.marpolbul.2019.02.069

21. Sicuro B, Pastorino P, Barbero R, Barisone S, Dellerba D, Menconi V, et al. Prevalence and antibiotic sensitivity of bacteria isolated from imported ornamental fish in Italy: A translocation of resistant strains?. Prev Vet Med 2020;175:104880. DOI: https://doi.org/10.1016/j.prevetmed.2019.104880

22. Munir MB, Hashim R, Nor S, Marsh TL. Effect of dietary prebiotics and probiotics on snakehead (Channa striata) health: Haematology and disease resistance parameters against Aeromonas hydrophila. Fish Shellfish Immun 2018;75:99-108. DOI: https://doi.org/10.1016/j.fsi.2018.02.005

23. Bai F, Han Y, Chen J, Zhang XH. Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 2008;274(1):36-40. DOI: https://doi.org/10.1016/j.aquaculture.2007.11.024

24. Dong Y, Yang Y, Liu J, Awan F, Lu C, Liu Y. Inhibition of Aeromonas hydrophila-induced intestinal inflammation and mucosal barrier function damage in crucian carp by oral administration of Lactococcus lactis. Fish Shellfish Immunol 2018;83:359-67. DOI: https://doi.org/10.1016/j.fsi.2018.09.041

25. Jiang Y, Zhou S, Chu W. The effects of dietary Bacillus cereus QSI-1 on skin mucus proteins profile and immune response in Crucian Carp (Carassius auratus gibelio). Fish Shellfish Immunol 2019;89:319-25. DOI: https://doi.org/10.1016/j.fsi.2019.04.014

26. Reina JC, Torres M, Llamas I. Stenotrophomonas maltophilia AHL-Degrading strains isolated from marine invertebrate microbiota attenuate the virulence of Pectobacterium carotovorum and Vibrio coralliilyticus. Mar Biotechnol 2019;21(2):276-90. DOI: https://doi.org/10.1007/s10126-019-09879-w

27. Zahran E, Abd El-Gawad EA, Risha E. Dietary Withania sominefera root confers protective and immunotherapeutic effects against Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2018;80:641-50. DOI: https://doi.org/10.1016/j.fsi.2018.06.009

28. Doğan S, Gökalsın B, Şenkardeş İ, Doğan A, Sesal NC. Anti-quorum sensing and anti-biofilm activities of Hypericum perforatum extracts against Pseudomonas aeruginosa. J Ethnopharmacol 2019;235:293-300. DOI: https://doi.org/10.1016/j.jep.2019.02.020

29. Paquet VE, Vincent AT, Moineau S, Charette SJ. Beyond the A‐layer: adsorption of lipopolysaccharides and characterization of bacteriophage‐insensitive mutants of Aeromonas salmonicida subsp. salmonicida. Mol Microbiol 2019;112(2):667-77. DOI: https://doi.org/10.1111/mmi.14308

30. Zamani I, Bouzari M, Emtiazi G, Ghasemi SM, Chang HI. Molecular investigation of two novel bacteriophages of a facultative methylotroph, Raoultella ornithinolytica: first report of Raoultella phages. Arch Virol 2019;164(8):2015-22. DOI: https://doi.org/10.1007/s00705-019-04282-1

31. Zhou S, Yu Z, Chu W. Effect of quorum-quenching bacterium Bacillus sp. QSI-1 on protein profiles and extracellular enzymatic activities of Aeromonas hydrophila YJ-1. BMC Microbiology 2019;19(1):135. DOI: https://doi.org/10.1186/s12866-019-1515-6

32. Gebru E, Lee JS, Son JC, Yang SY, Shin SA, Kim B, et al. Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. J Anim Sci 2010;88(12):3880-6. DOI: https://doi.org/10.2527/jas.2010-2939

33. Kim KN, Ingale SL, Kim JM, Lee SH, Lee JH, Kwon II, et al. Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophages are more effective. Anim Feed Sci Tech 2014;196:88-95. DOI: https://doi.org/10.1016/j.anifeedsci.2014.06.012

34. Kim JS, Hosseindoust A, Lee SH, Choi YH, Kim MJ, Lee JH, et al. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal 2016;11(1):45-53. DOI: https://doi.org/10.1017/S1751731116001166

35. Janczuk Richter M, Marinović I, Niedziółka Jönsson J, Szot Karpińska K. Recent applications of bacteriophage-based electrodes: A mini-review. Electrochem Commun 2019;99:11-5. DOI: https://doi.org/10.1016/j.elecom.2018.12.011

36. Leitner L, Kessler TM, Klumpp J. Bacteriophages: a panacea in neuro-urology?. Eur Urol Focus 2020;6(3):518-21. DOI: https://doi.org/10.1016/j.euf.2019.10.018

37. Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus?. Trends Microbiol 2005;13(6):278-84. DOI: https://doi.org/10.1016/j.tim.2005.04.003

38. Weinbauer M. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004;28(2):127-81. DOI: https://doi.org/10.1016/j.femsre.2003.08.001

39. Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol 2015;13(12):777-86. DOI: https://doi.org/10.1038/nrmicro3564

40. Culot A, Grosset N, Gautier M. Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture, 2019;513:734423. DOI: https://doi.org/10.1016/j.aquaculture.2019.734423

41. Santos SB, Costa AR, Carvalho C, Nóbrega FL, Azeredo J. Exploiting bacteriophage proteomes: The hidden biotechnological potential. Trends Biotechnol 2018;36(9):966-84. DOI: https://doi.org/10.1016/j.tibtech.2018.04.006

42. Bettarel Y, Combe M, Adingra A, Ndiaye A, Bouvier T, Panfili J, et al. Hordes of phages in the gut of the tilapia Sarotherodon melanotheron. Sci Rep 2018;8(1):11311. DOI: https://doi.org/10.1038/s41598-018-29643-9

43. Jun JW, Kim JH, Shin SP, Han JE, Chai JY, Park SC. Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquaculture 2013;416-417:289-95. DOI: https://doi.org/10.1016/j.aquaculture.2013.09.045

44. Ly-Chatain MH. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 2014;5:51-8. DOI: https://doi.org/10.3389/fmicb.2014.00051

45. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, et al. Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr Microbiol 2012;64(5):418-26. DOI: https://doi.org/10.1007/s00284-012-0091-x

46. Christiansen RH, Madsen L, Dalsgaard I, Castillo D, Kalatzis P, Middelboe M. Effect of bacteriophages on the growth of Flavobacterium psychrophilum and development of phage-resistant strains. Microb Ecol 2016;71(4):845-59. DOI: https://doi.org/10.1007/s00248-016-0737-5

47. Bai M, Cheng YH, Sun XQ, Wang ZY, Wang YX, Cui XL, et al. Nine novel phages from a plateau Lake in Southwest China: insights into Aeromonas phage diversity. Viruses 2019;11(7):615. DOI: https://doi.org/10.3390/v11070615

48. Kazimierczak J, Wójcik EA, Witaszewska J, Guziński A, Górecka E, Stańczyk M, et al. Complete genome sequences of Aeromonas and Pseudomonas phages as a supportive tool for development of antibacterial treatment in aquaculture. Virol J 2019;16:4. DOI: https://doi.org/10.1186/s12985-018-1113-5

49. Sørensen MCH, Gencay YE, Birk T, Baldvinsson SB, Jäckel C, Hammerl JA, et al. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages. PLoS One 2015;10(1):e0116287. DOI: https://doi.org/10.1371/journal.pone.0116287

50. Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HL, Tran MT, et al. Protective effects of bacteriophages against Aeromonas hydrophila causing motile Aeromonas septicemia (MAS) in striped Catfish. Antibiotics 2018;7(1):16. DOI: https://doi.org/10.3390/antibiotics7010016

51. Richards PJ, Connerton PL, Connerton IF. Phage biocontrol of Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front Microbiol 2019;10:476. DOI: https://doi.org/10.3389/fmicb.2019.00476

52. Brockhurst M, Koskella B, Zhang QG. Bacteria-phage antagonistic coevolution and the implications for phage therapy. In: Harper D, Abedon S, Burrowes B, McConville M, editors. Bacteriophages. Cham: Springer; 2017. p. 1-21. DOI: https://doi.org/10.1007/978-3-319-40598-8_7-1

53. El-Araby DA, El-Didamony G, Megahed M. New approach to use phage therapy against Aeromonas hydrophila induced motile Aeromonas septicemia in Nile tilapia. J Marine Sci Res Dev 2016;6:194. DOI: https://doi.org/10.4172/2155-9910.1000194

54. Kwon AS, Kang BJ, Jun SY, Yoon SJ, Lee JH, Kang SH. Evaluating the effectiveness of Streptococcus parauberis bacteriophage Str-PAP-1 as an environmentally friendly alternative to antibiotics for aquaculture. Aquaculture 2017;468(Pt 1):464-70. DOI: https://doi.org/10.1016/j.aquaculture.2016.11.013

55. Wang Y, Barton M, Elliott L, Li X, Abraham S, O’Dea M, et al. Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 2017;473:251-8. DOI: https://doi.org/10.1016/j.aquaculture.2017.01.003

56. Quiroz Guzmán E, Peña Rodriguez A, Vázquez Juárez R, Barajas Sandoval DR, Balcázar JL, Martínez Díaz SF. Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture 2018;492:273-9. DOI: https://doi.org/10.1016/j.aquaculture.2018.04.025

57. Schulz P, Robak S, Dastych J, Krzysztof Siwicki A. Influence of bacteriophages cocktail on European eel (Anguilla anguilla) immunity and survival after experimental challenge. Fish Shellfish Immun 2018;84:28-37. DOI: https://doi.org/10.1016/j.fsi.2018.09.056

58. Munsch Alatossava P, Alatossava T. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front Microbiol 2013;4:408. DOI: https://doi.org/10.3389/fmicb.2013.00408

59. Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 2014;28(3):265-74. DOI: https://doi.org/10.1007/s40259-013-0081-y

60. Wang C, Li P, Niu W, Yuan X, Liu H, Huang Y, et al. Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol 2019;170(3):156-64. DOI: https://doi.org/10.1016/j.resmic.2019.01.003

61. Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP, Gumy LF, et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol 2019;5(1):48-55. DOI: https://doi.org/10.1038/s41564-019-0612-5

62. Fischer S, Kittler S, Klein G, Glünder G. Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS ONE 2013;8(10):e78543. DOI: https://doi.org/10.1371/journal.pone.0078543

63. Mion S, Rémy B, Plener L, Brégeon F, Chabrière E, Daudé D. Quorum quenching lactonase strengthens bacteriophage and antibiotic arsenal against Pseudomonas aeruginosa clinical isolates. Front Microbiol 2019;10:2049. DOI: https://doi.org/10.3389/fmicb.2019.02049

64. Mateus L, Costa L, Silva YJ, Pereira C, Cunha A, Almeida A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture 2014;424:167-73. DOI: https://doi.org/10.1016/j.aquaculture.2014.01.001

65. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol 2013;8(6):769-83. DOI: https://doi.org/10.2217/fmb.13.47

66. Cairns BJ, Timms AR, Jansen VA, Connerton IF, Payne RJ. Quantitative models of in vitro bacteriophage–host dynamics and their application to phage therapy. PLoS Pathog 2009;5(1):e1000253. DOI: https://doi.org/10.1371/journal.ppat.1000253

67. Srinivasan R, Chaitanyakumar A, Subramanian P, Mageswari A, Gomathi A, Aswini V, et al. Recombinant engineered phage-derived enzybiotic in Pichia pastoris X-33 as whole cell biocatalyst for effective biocontrol of Vibrio parahaemolyticus in aquaculture. Int J Biol Macromol 2020;154:1576-85. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.042

68. Li Z, Ren H, Li Q, Murtaza B, Li X, Zhang J et al. Exploring the effects of phage cocktails in preventing Vibrio infections in juvenile sea cucumber (Apostichopus japonicus) farming. Aquaculture 2020;515:734599. DOI: https://doi.org/10.1016/j.aquaculture.2019.734599

69. Plaza N, Castillo D, Pérez Reytor D, Higuera G, García K, Bastías R. Bacteriophages in the control of pathogenic vibrios. Electron J Biotechn 2018;31:24-33. DOI: https://doi.org/10.1016/j.ejbt.2017.10.012

70. Weber Dabrowska B, Dabrowski M, Slopek S. Studies on bacteriophage penetration in patients subjected to phage therapy. Arch Immunol Ther Ex 1987;35(5):563-8.

71. Bruttin A, Brüssow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents and chemother 2005;49(7):2874-8. DOI: https://doi.org/10.1128/AAC.49.7.2874-2878.2005

72. Cooper CJ, Khan Mirzaei M, Nilsson AS. Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 2016:7:1209. DOI: https://doi.org/10.3389/fmicb.2016.01209

73. Verbeken G, Pirnay JP, Lavigne R, Jennes S, De Vos D, Casteels M, et al. Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Ex 2014;62(2):117-29. DOI: https://doi.org/10.1007/s00005-014-0269-y

74. Food & Drug Administration [Internet]. GRAS Notice 218; 2006 [citado 26 de junio de 2020]. Recuperado a partir de: https://www.fda.gov/food/generally-recognized-safe-gras/fdas-approac h-gras-provision-history-processes

75. United States Department of Agriculture Food Safety [Internet]. Washington DG: FSIS Directive 7120; 2011 [citado 26 de junio de 2020]. Recuperado a partir de: https://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b-8be8-809a1f051d4c/7120.1.pdf?MOD=AJPERES

76. Intralytix I [Internet]. Intralytix, Inc; 2018 [citado 26 de junio de 2020]. Recuperado a partir de: Recuperado a partir de: http://www.intralytix.com/

77. Changing the way the world treats bacterial disease [Internet]. Agriculture; 2020 [citado 26 de junio de 2020]. Recuperado a partir de: https://www.omnilytics.com/agriculture/

78. Aquaphage [Internet]. Aquaphage. 2018 [citado 26 de junio de 2020]. Recuperado a partir de: http://aquaphage.weebly.com/

79. Evaluar el uso de fagos en la ecología bacteriana ambiental [Internet]. Enviphage 20182020 [citado 26 de junio de 2020]. Recuperado a partir de http://www.enviphage.eu/en/divulgation/impacts/

80. Soni KA, Nannapaneni R. Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J Food Prot 2010a;73(1):32-8. DOI: https://doi.org/10.4315/0362-028X-73.1.32

81. Soni KA, Nannapaneni R, Hagens S. Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis 2010b;7(4):427-34. DOI: https://doi.org/10.1089=fpd.2009.0432

82. Weld RJ, Butts C, Heinemann JA. Models of phage growth and their applicability to phage therapy. J Theor Biol 2004;227(1):1-11. DOI: https://doi.org/10.1016/S0022-5193(03) 00262-5

83. Nakai T, Park SC. Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 2002;153(1):13-8. DOI: https://doi.org/10.1016/ S0923-2508(01)01280-3

84. Barrow PA, Soothill JS. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbial 1997;5(7):268-71. DOI: https://doi.org/10.1016/ S0966-842X(97)01054-8

85. Morrison S, Rainnie DJ. Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture? Can Tech Rep Fish Aquat Sci 2004;2532, 23.

86. Alisky J, Iczkowski K, Rapoport A, Troitsky N. Bacteriophages show promise as antimicrobial agents. J Infect 1998;36(1):5-15. DOI: https://doi.org/10.1016/S0163-4453(98) 92874-2

87. Sandeep K. Bacteriophage precision drug against bacterial infections. Curr Sci [Internet]. 2006 [citado 5 de julio de 2020];90(5):631-3. Recuperado a partir de: https://www.jstor.org/stable/240 89106

88. Reina J, Reina N. Fagoterapia ¿una alternativa a la antibioticoterapia?. Rev Esp Quimioter 2018;31(2):101-4.

89. Abedon ST, Garcia P, Mullany P, Aminov R. Phage therapy: past, present and future. Front Microbiol 2017;8:981. DOI: https://doi.org/10.3389/fmicb.2017.00981

90. Reindel R, Fiore CR. Phage therapy: considerations and challenges for development. Clinical Infectious Diseases 2017;64(11):1589-90. DOI: https://doi.org/10.1093/cid/cix188

91. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Responsible use of antibiotics in aquaculture. Rome, Italy;2005.

92. Dada AC, Ahmad A, Usup G, Heng LY. Speciation and antimicrobial resistance of Enterococci isolated from recreational beaches in Malaysia. Env Mon Ass 2013;185(2):1583-99. DOI: https://doi.org/10.1007/s10661-012-2653-6

93. Santander J, Robeson J. Phage-resistance of Salmonella enterica serovar Enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide. Electron J Biotechn 2007;10(4):627-32. DOI: https://doi.org/10.2225/vol10-issue4-fulltext-14

94. Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, et al. Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 2010;5(7):e11720. DOI: https://doi.org/10.1371/journal.pone.0011720

95. Colomer-Lluch M, Jofre J, Muniesa, M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 2011;6(3):e17549. DOI: https://doi.org/10.1371/journal.pone.0017549

______________

Editor's Note:

Journal of the Selva Andina Animal Science (JSAAS) remains neutral regarding jurisdictional claims published on maps and institutional affiliations.

 

1. Twort FW. An investigation on the nature of ultra-microscopic viruses. Lancet 1915;186 (4814):1241-3. DOI: https://doi.org/10.1016/S0 140-6736(01)20383-3        [ Links ]

2. D'Herelle F. On an invisible microbe antagonistic to dysentery bacilli. C R Acad Sci Paris 1917;165:373-5. DOI: https://doi.org/10.4161/bact.1.1.14941        [ Links ]

3. Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014;5 (1):226-35. DOI: https://doi.org/10.4161/viru.25991        [ Links ]

4. D'Herelle F. Studies upon Asiatic cholera. Yale J Biol Med 1929;1(4):195-219.        [ Links ]

5. Adams MH. Bacteriophages [Internet]. CABI International. New York (& London), Inter-science Publishers: Angew Chem; 1951 [citado 26 de junio de 2020]. 19602204111. Recuperado a partir de: https://www.cabdirect.org/cabdirect/abstract/19602204111

6. Ronda C, Vázquez M, López R. Los bacteriófagos como herramienta para combatir infecciones en Acuicultura. AquaTIC 2016;18:3-10.        [ Links ]

7. Flores Kossack C, Montero R, Köllner B, Maisey K. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish Shellfish Immunol 2020:98: 52-67. DOI: https://doi.org/10.1016/j.fsi.2019.12.093        [ Links ]

8. Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio sp: A significant threat in aquaculture. Process Biochem 2020;94:213-23. DOI: https://doi.org/10.1016/j.procbio.2020.04.029        [ Links ]

9. Kapetsky JM. Freshwater Fisheries From a Global Perspective 2001. Report produced under contract to the Information Program of the World Resources Institute, Washington DC; 2001.

10. Rao BM, Lalitha KV. Bacteriophages for aquaculture: are they beneficial or inimical. Aquaculture 2015;437:146-54. DOI https://doi.org/10.1016/j.aquaculture.2014.11.039        [ Links ]

11. Organización de las Naciones Unidas para la Alimentación y la Agricultura. El estado mundial de la pesca y la acuicultura 2020. Versión resumida. La sostenibilidad en acción. Roma. 2020. DOI: https://doi.org/10.4060/ca9231es        [ Links ]

12. Romalde JL. Héroes y villanos: bacterias asociadas al cultivo de moluscos. AquaTIC 2012;37:45-59.        [ Links ]

13. Nicholson P, Mon-on N, Jaemwimol P, Tattiyapong P, Surachetpong W. Coinfection of tilapia lake virus and Aeromonas hydrophila synergistically increased mortality and worsened the disease severity in tilapia (Oreochromis spp.). Aquaculture 2019;520:734746. DOI: https://doi.org/10.1016/j.aquaculture.2019.734746        [ Links ]

14. Shameena SS, Kumar K, Kumar S, Kumar S, Rathore G. Virulence characteristics of Aeromonas veronii biovars isolated from infected freshwater goldfish (Carassius auratus). Aquaculture 2020;518:734819. DOI: https://doi.org/10.1016/j.aquaculture.2019.734819        [ Links ]

15. Myszka K, Olejnik A, Majcher M, Sobieszczańska N, Grygier A, Powierska Czarny J, et al. Green pepper essential oil as a biopreservative agent for fish-based products: Antimicrobial and antivirulence activities against Pseudomonas aeruginosa KM01. LWT 2019;108:6-13. DOI: https://doi.org/10.1016/j.lwt.2019.03.047        [ Links ]

16. Subasinghe AP, Bondad Reontase MG, McGladdery SE. Aquaculture development, health and wealth. In: Subasinghe RP, Bueno P, Philips MJ, Hough C, McGladdery SE, Arthur JR, editors. Aquaculture in the third millennium technical proceedings of the conference on aquaculture in the third millennium. Bangkok, Thailand: NACA, Bangkok and FAO; 2001. p. 167-91.

17. Shinn AJ, Pratoomyot J, Bron J, Paladini G, Brooker E, Brooker A. Economic impacts of aquatic parasites on global finfish production. Global Aquaculture Advocate. 2015. p. 58-61.

18. Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 2014;22(1):36-41. DOI: https://doi.org/10.1016/j.tim.2013.11.001        [ Links ]

19. Wang H, Ren L, Yu X, Hu J, Chen Y, He G, et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control 2017;80:217-25. DOI: https://doi.org/10.1016/j.foodcont.2017.04.034        [ Links ]

20. Wu J, Mao C, Deng Y, Guo Z, Liu G, Xu, L, et al. Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. Mar Pollut Bull 2019;141:343-9. DOI: https://doi.org/10.1016/j.marpolbul.2019.02.069        [ Links ]

21. Sicuro B, Pastorino P, Barbero R, Barisone S, Dellerba D, Menconi V, et al. Prevalence and antibiotic sensitivity of bacteria isolated from imported ornamental fish in Italy: A translocation of resistant strains?. Prev Vet Med 2020;175:104880. DOI: https://doi.org/10.1016/j.prevetmed.2019.104880        [ Links ]

22. Munir MB, Hashim R, Nor S, Marsh TL. Effect of dietary prebiotics and probiotics on snakehead (Channa striata) health: Haematology and disease resistance parameters against Aeromonas hydrophila. Fish Shellfish Immun 2018;75:99-108. DOI: https://doi.org/10.1016/j.fsi.2018.02.005        [ Links ]

23. Bai F, Han Y, Chen J, Zhang XH. Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 2008;274(1):36-40. DOI: https://doi.org/10.1016/j.aquaculture.2007.11.024        [ Links ]

24. Dong Y, Yang Y, Liu J, Awan F, Lu C, Liu Y. Inhibition of Aeromonas hydrophila-induced intestinal inflammation and mucosal barrier function damage in crucian carp by oral administration of Lactococcus lactis. Fish Shellfish Immunol 2018;83:359-67. DOI: https://doi.org/10.1016/j.fsi.2018.09.041        [ Links ]

25. Jiang Y, Zhou S, Chu W. The effects of dietary Bacillus cereus QSI-1 on skin mucus proteins profile and immune response in Crucian Carp (Carassius auratus gibelio). Fish Shellfish Immunol 2019;89:319-25. DOI: https://doi.org/10.1016/j.fsi.2019.04.014        [ Links ]

26. Reina JC, Torres M, Llamas I. Stenotrophomonas maltophilia AHL-Degrading strains isolated from marine invertebrate microbiota attenuate the virulence of Pectobacterium carotovorum and Vibrio coralliilyticus. Mar Biotechnol 2019;21(2):276-90. DOI: https://doi.org/10.1007/s10126-019-09879-w        [ Links ]

27. Zahran E, Abd El-Gawad EA, Risha E. Dietary Withania sominefera root confers protective and immunotherapeutic effects against Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2018;80:641-50. DOI: https://doi.org/10.1016/j.fsi.2018.06.009        [ Links ]

28. Doğan S, Gökalsın B, Şenkardeş İ, Doğan A, Sesal NC. Anti-quorum sensing and anti-biofilm activities of Hypericum perforatum extracts against Pseudomonas aeruginosa. J Ethnopharmacol 2019;235:293-300. DOI: https://doi.org/10.1016/j.jep.2019.02.020        [ Links ]

29. Paquet VE, Vincent AT, Moineau S, Charette SJ. Beyond the A‐layer: adsorption of lipopolysaccharides and characterization of bacteriophage‐insensitive mutants of Aeromonas salmonicida subsp. salmonicida. Mol Microbiol 2019;112(2):667-77. DOI: https://doi.org/10.1111/mmi.14308        [ Links ]

30. Zamani I, Bouzari M, Emtiazi G, Ghasemi SM, Chang HI. Molecular investigation of two novel bacteriophages of a facultative methylotroph, Raoultella ornithinolytica: first report of Raoultella phages. Arch Virol 2019;164(8):2015-22. DOI: https://doi.org/10.1007/s00705-019-04282-1        [ Links ]

31. Zhou S, Yu Z, Chu W. Effect of quorum-quenching bacterium Bacillus sp. QSI-1 on protein profiles and extracellular enzymatic activities of Aeromonas hydrophila YJ-1. BMC Microbiology 2019;19(1):135. DOI: https://doi.org/10.1186/s12866-019-1515-6        [ Links ]

32. Gebru E, Lee JS, Son JC, Yang SY, Shin SA, Kim B, et al. Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. J Anim Sci 2010;88(12):3880-6. DOI: https://doi.org/10.2527/jas.2010-2939        [ Links ]

33. Kim KN, Ingale SL, Kim JM, Lee SH, Lee JH, Kwon II, et al. Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophages are more effective. Anim Feed Sci Tech 2014;196:88-95. DOI: https://doi.org/10.1016/j.anifeedsci.2014.06.012        [ Links ]

34. Kim JS, Hosseindoust A, Lee SH, Choi YH, Kim MJ, Lee JH, et al. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal 2016;11(1):45-53. DOI: https://doi.org/10.1017/S1751731116001166        [ Links ]

35. Janczuk Richter M, Marinović I, Niedziółka Jönsson J, Szot Karpińska K. Recent applications of bacteriophage-based electrodes: A mini-review. Electrochem Commun 2019;99:11-5. DOI: https://doi.org/10.1016/j.elecom.2018.12.011        [ Links ]

36. Leitner L, Kessler TM, Klumpp J. Bacteriophages: a panacea in neuro-urology?. Eur Urol Focus 2020;6(3):518-21. DOI: https://doi.org/10.1016/j.euf.2019.10.018        [ Links ]

37. Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus?. Trends Microbiol 2005;13(6):278-84. DOI: https://doi.org/10.1016/j.tim.2005.04.003        [ Links ]

38. Weinbauer M. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004;28(2):127-81. DOI: https://doi.org/10.1016/j.femsre.2003.08.001        [ Links ]

39. Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol 2015;13(12):777-86. DOI: https://doi.org/10.1038/nrmicro3564        [ Links ]

40. Culot A, Grosset N, Gautier M. Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture, 2019;513:734423. DOI: https://doi.org/10.1016/j.aquaculture.2019.734423        [ Links ]

41. Santos SB, Costa AR, Carvalho C, Nóbrega FL, Azeredo J. Exploiting bacteriophage proteomes: The hidden biotechnological potential. Trends Biotechnol 2018;36(9):966-84. DOI: https://doi.org/10.1016/j.tibtech.2018.04.006        [ Links ]

42. Bettarel Y, Combe M, Adingra A, Ndiaye A, Bouvier T, Panfili J, et al. Hordes of phages in the gut of the tilapia Sarotherodon melanotheron. Sci Rep 2018;8(1):11311. DOI: https://doi.org/10.1038/s41598-018-29643-9        [ Links ]

43. Jun JW, Kim JH, Shin SP, Han JE, Chai JY, Park SC. Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquaculture 2013;416-417:289-95. DOI: https://doi.org/10.1016/j.aquaculture.2013.09.045        [ Links ]

44. Ly-Chatain MH. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 2014;5:51-8. DOI: https://doi.org/10.3389/fmicb.2014.00051        [ Links ]

45. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, et al. Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr Microbiol 2012;64(5):418-26. DOI: https://doi.org/10.1007/s00284-012-0091-x        [ Links ]

46. Christiansen RH, Madsen L, Dalsgaard I, Castillo D, Kalatzis P, Middelboe M. Effect of bacteriophages on the growth of Flavobacterium psychrophilum and development of phage-resistant strains. Microb Ecol 2016;71(4):845-59. DOI: https://doi.org/10.1007/s00248-016-0737-5        [ Links ]

47. Bai M, Cheng YH, Sun XQ, Wang ZY, Wang YX, Cui XL, et al. Nine novel phages from a plateau Lake in Southwest China: insights into Aeromonas phage diversity. Viruses 2019;11(7):615. DOI: https://doi.org/10.3390/v11070615        [ Links ]

48. Kazimierczak J, Wójcik EA, Witaszewska J, Guziński A, Górecka E, Stańczyk M, et al. Complete genome sequences of Aeromonas and Pseudomonas phages as a supportive tool for development of antibacterial treatment in aquaculture. Virol J 2019;16:4. DOI: https://doi.org/10.1186/s12985-018-1113-5        [ Links ]

49. Sørensen MCH, Gencay YE, Birk T, Baldvinsson SB, Jäckel C, Hammerl JA, et al. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages. PLoS One 2015;10(1):e0116287. DOI: https://doi.org/10.1371/journal.pone.0116287        [ Links ]

50. Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HL, Tran MT, et al. Protective effects of bacteriophages against Aeromonas hydrophila causing motile Aeromonas septicemia (MAS) in striped Catfish. Antibiotics 2018;7(1):16. DOI: https://doi.org/10.3390/antibiotics7010016        [ Links ]

51. Richards PJ, Connerton PL, Connerton IF. Phage biocontrol of Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front Microbiol 2019;10:476. DOI: https://doi.org/10.3389/fmicb.2019.00476        [ Links ]

52. Brockhurst M, Koskella B, Zhang QG. Bacteria-phage antagonistic coevolution and the implications for phage therapy. In: Harper D, Abedon S, Burrowes B, McConville M, editors. Bacteriophages. Cham: Springer; 2017. p. 1-21. DOI: https://doi.org/10.1007/978-3-319-40598-8_7-1

53. El-Araby DA, El-Didamony G, Megahed M. New approach to use phage therapy against Aeromonas hydrophila induced motile Aeromonas septicemia in Nile tilapia. J Marine Sci Res Dev 2016;6:194. DOI: https://doi.org/10.4172/2155-9910.1000194        [ Links ]

54. Kwon AS, Kang BJ, Jun SY, Yoon SJ, Lee JH, Kang SH. Evaluating the effectiveness of Streptococcus parauberis bacteriophage Str-PAP-1 as an environmentally friendly alternative to antibiotics for aquaculture. Aquaculture 2017;468(Pt 1):464-70. DOI: https://doi.org/10.1016/j.aquaculture.2016.11.013        [ Links ]

55. Wang Y, Barton M, Elliott L, Li X, Abraham S, O’Dea M, et al. Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 2017;473:251-8. DOI: https://doi.org/10.1016/j.aquaculture.2017.01.003        [ Links ]

56. Quiroz Guzmán E, Peña Rodriguez A, Vázquez Juárez R, Barajas Sandoval DR, Balcázar JL, Martínez Díaz SF. Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture 2018;492:273-9. DOI: https://doi.org/10.1016/j.aquaculture.2018.04.025        [ Links ]

57. Schulz P, Robak S, Dastych J, Krzysztof Siwicki A. Influence of bacteriophages cocktail on European eel (Anguilla anguilla) immunity and survival after experimental challenge. Fish Shellfish Immun 2018;84:28-37. DOI: https://doi.org/10.1016/j.fsi.2018.09.056        [ Links ]

58. Munsch Alatossava P, Alatossava T. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front Microbiol 2013;4:408. DOI: https://doi.org/10.3389/fmicb.2013.00408        [ Links ]

59. Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 2014;28(3):265-74. DOI: https://doi.org/10.1007/s40259-013-0081-y        [ Links ]

60. Wang C, Li P, Niu W, Yuan X, Liu H, Huang Y, et al. Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol 2019;170(3):156-64. DOI: https://doi.org/10.1016/j.resmic.2019.01.003        [ Links ]

61. Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP, Gumy LF, et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol 2019;5(1):48-55. DOI: https://doi.org/10.1038/s41564-019-0612-5        [ Links ]

62. Fischer S, Kittler S, Klein G, Glünder G. Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS ONE 2013;8(10):e78543. DOI: https://doi.org/10.1371/journal.pone.0078543        [ Links ]

63. Mion S, Rémy B, Plener L, Brégeon F, Chabrière E, Daudé D. Quorum quenching lactonase strengthens bacteriophage and antibiotic arsenal against Pseudomonas aeruginosa clinical isolates. Front Microbiol 2019;10:2049. DOI: https://doi.org/10.3389/fmicb.2019.02049        [ Links ]

64. Mateus L, Costa L, Silva YJ, Pereira C, Cunha A, Almeida A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture 2014;424:167-73. DOI: https://doi.org/10.1016/j.aquaculture.2014.01.001        [ Links ]

65. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol 2013;8(6):769-83. DOI: https://doi.org/10.2217/fmb.13.47        [ Links ]

66. Cairns BJ, Timms AR, Jansen VA, Connerton IF, Payne RJ. Quantitative models of in vitro bacteriophage–host dynamics and their application to phage therapy. PLoS Pathog 2009;5(1):e1000253. DOI: https://doi.org/10.1371/journal.ppat.1000253        [ Links ]

67. Srinivasan R, Chaitanyakumar A, Subramanian P, Mageswari A, Gomathi A, Aswini V, et al. Recombinant engineered phage-derived enzybiotic in Pichia pastoris X-33 as whole cell biocatalyst for effective biocontrol of Vibrio parahaemolyticus in aquaculture. Int J Biol Macromol 2020;154:1576-85. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.042        [ Links ]

68. Li Z, Ren H, Li Q, Murtaza B, Li X, Zhang J et al. Exploring the effects of phage cocktails in preventing Vibrio infections in juvenile sea cucumber (Apostichopus japonicus) farming. Aquaculture 2020;515:734599. DOI: https://doi.org/10.1016/j.aquaculture.2019.734599        [ Links ]

69. Plaza N, Castillo D, Pérez Reytor D, Higuera G, García K, Bastías R. Bacteriophages in the control of pathogenic vibrios. Electron J Biotechn 2018;31:24-33. DOI: https://doi.org/10.1016/j.ejbt.2017.10.012        [ Links ]

70. Weber Dabrowska B, Dabrowski M, Slopek S. Studies on bacteriophage penetration in patients subjected to phage therapy. Arch Immunol Ther Ex 1987;35(5):563-8.        [ Links ]

71. Bruttin A, Brüssow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents and chemother 2005;49(7):2874-8. DOI: https://doi.org/10.1128/AAC.49.7.2874-2878.2005        [ Links ]

72. Cooper CJ, Khan Mirzaei M, Nilsson AS. Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 2016:7:1209. DOI: https://doi.org/10.3389/fmicb.2016.01209        [ Links ]

73. Verbeken G, Pirnay JP, Lavigne R, Jennes S, De Vos D, Casteels M, et al. Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Ex 2014;62(2):117-29. DOI: https://doi.org/10.1007/s00005-014-0269-y        [ Links ]

74. Food & Drug Administration [Internet]. GRAS Notice 218; 2006 [citado 26 de junio de 2020]. Recuperado a partir de: https://www.fda.gov/food/generally-recognized-safe-gras/fdas-approac h-gras-provision-history-processes

75. United States Department of Agriculture Food Safety [Internet]. Washington DG: FSIS Directive 7120; 2011 [citado 26 de junio de 2020]. Recuperado a partir de: https://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b-8be8-809a1f051d4c/7120.1.pdf?MOD=AJPERES

76. Intralytix I [Internet]. Intralytix, Inc; 2018 [citado 26 de junio de 2020]. Recuperado a partir de: Recuperado a partir de: http://www.intralytix.com/

77. Changing the way the world treats bacterial disease [Internet]. Agriculture; 2020 [citado 26 de junio de 2020]. Recuperado a partir de: https://www.omnilytics.com/agriculture/

78. Aquaphage [Internet]. Aquaphage. 2018 [citado 26 de junio de 2020]. Recuperado a partir de: http://aquaphage.weebly.com/

79. Evaluar el uso de fagos en la ecología bacteriana ambiental [Internet]. Enviphage 20182020 [citado 26 de junio de 2020]. Recuperado a partir de http://www.enviphage.eu/en/divulgation/impacts/

80. Soni KA, Nannapaneni R. Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J Food Prot 2010a;73(1):32-8. DOI: https://doi.org/10.4315/0362-028X-73.1.32

81. Soni KA, Nannapaneni R, Hagens S. Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis 2010b;7(4):427-34. DOI: https://doi.org/10.1089=fpd.2009.0432

82. Weld RJ, Butts C, Heinemann JA. Models of phage growth and their applicability to phage therapy. J Theor Biol 2004;227(1):1-11. DOI: https://doi.org/10.1016/S0022-5193(03) 00262-5        [ Links ]

83. Nakai T, Park SC. Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 2002;153(1):13-8. DOI: https://doi.org/10.1016/ S0923-2508(01)01280-3        [ Links ]

84. Barrow PA, Soothill JS. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbial 1997;5(7):268-71. DOI: https://doi.org/10.1016/ S0966-842X(97)01054-8        [ Links ]

85. Morrison S, Rainnie DJ. Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture? Can Tech Rep Fish Aquat Sci 2004;2532, 23.        [ Links ]

86. Alisky J, Iczkowski K, Rapoport A, Troitsky N. Bacteriophages show promise as antimicrobial agents. J Infect 1998;36(1):5-15. DOI: https://doi.org/10.1016/S0163-4453(98) 92874-2        [ Links ]

87. Sandeep K. Bacteriophage precision drug against bacterial infections. Curr Sci [Internet]. 2006 [citado 5 de julio de 2020];90(5):631-3. Recuperado a partir de: https://www.jstor.org/stable/240 89106

88. Reina J, Reina N. Fagoterapia ¿una alternativa a la antibioticoterapia?. Rev Esp Quimioter 2018;31(2):101-4.        [ Links ]

89. Abedon ST, Garcia P, Mullany P, Aminov R. Phage therapy: past, present and future. Front Microbiol 2017;8:981. DOI: https://doi.org/10.3389/fmicb.2017.00981        [ Links ]

90. Reindel R, Fiore CR. Phage therapy: considerations and challenges for development. Clinical Infectious Diseases 2017;64(11):1589-90. DOI: https://doi.org/10.1093/cid/cix188        [ Links ]

91. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Responsible use of antibiotics in aquaculture. Rome, Italy;2005.        [ Links ]

92. Dada AC, Ahmad A, Usup G, Heng LY. Speciation and antimicrobial resistance of Enterococci isolated from recreational beaches in Malaysia. Env Mon Ass 2013;185(2):1583-99. DOI: https://doi.org/10.1007/s10661-012-2653-6        [ Links ]

93. Santander J, Robeson J. Phage-resistance of Salmonella enterica serovar Enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide. Electron J Biotechn 2007;10(4):627-32. DOI: https://doi.org/10.2225/vol10-issue4-fulltext-14        [ Links ]

94. Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, et al. Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 2010;5(7):e11720. DOI: https://doi.org/10.1371/journal.pone.0011720        [ Links ]

95. Colomer-Lluch M, Jofre J, Muniesa, M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 2011;6(3):e17549. DOI: https://doi.org/10.1371/journal.pone.0017549        [ Links ]