SciELO - Scientific Electronic Library Online

 
vol.20 número2DISCRIMINACIÓN SALARIAL POR GÉNERO: ANÁLISIS DE LAS EMPRESAS DEL SECTOR PRIVADO EN EL EJE CENTRAL DE BOLIVIARIESGO DE LIQUIDEZ Y RENTABILIDAD DE LAS ACCIONES EN LOS MERCADOS EMERGENTES DE AMÉRICA LATINA índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Investigación & Desarrollo

versión On-line ISSN 2518-4431

Resumen

UGARTE ONTIVEROS, Darwin  y  APARICIO DE GUZMAN, Ruth Marcela. TÉCNICAS ROBUSTAS Y NO ROBUSTAS PARA IDENTIFICAR OUTLIERS EN EL ANÁLISIS DE REGRESIÓN. Inv. y Des. [online]. 2020, vol.20, n.2, pp.41-56. ISSN 2518-4431.

Verificar si los resultados de un modelo de regresión reflejan el patrón de los datos, o si los mismos se deben a unas cuantas observaciones atípicas (outliers) es un paso importante en el proceso de investigación empírica. Para este propósito resulta aún común apoyarse en procedimientos (estándares) que no son eficaces para este propósito, al sufrir del denominado “masking effect”, algunos de ellos sugeridos incluso en los libros tradicionales de econometría. El presente trabajo pretende alertar a la comunidad académica sobre el peligro de implementar estas técnicas estándares, mostrando el pésimo desempeño de las mismas. Asimismo, se sugiere aplicar otras técnicas más idóneas sugeridas en la literatura sobre “estadística robusta” para identificar outliers en el análisis multivariado. Para facilitar la aplicación de las mismas, el trabajo pone a disposición de la comunidad académica un programa en Stata del tipo do-file para identificar y categorizar outliers basado en el trabajo de [1]. Simulaciones de Monte Carlo dan evidencia de la aplicabilidad de la misma.

Palabras clave : Outliers; Estadística Robusta; Análisis de Regresión; Stata.

        · resumen en Inglés     · texto en Español

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons