SciELO - Scientific Electronic Library Online

 
vol.2 issue1Optimization of irrigated areas base on hydrology stochastics and hydroponic systems in the community Centro Rivera, Desaguadero river, Altiplano centralMathematical modeling wet bulb under superficial drip irrigation in soils of the Bolivian Altiplano author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales

Print version ISSN 2409-1618

Abstract

CALLISAYA VARGAS, Alan Roly  and  YUCRA SEA, Edwin E.   Assessment of change in quinoa expansion in a year child using Landsat images. RIIARn [online]. 2015, vol.2, n.1, pp.35-44. ISSN 2409-1618.

ABSTRACT The Altiplano presents rainfall gradient from north to south. In the present study the surfaces of quinoa, grasslands and water bodies is evaluated with Landsat satellite images freely available through the ERDAS program. In order to determine if the surfaces are actually the obtained ones, they were compared with PDM's, as a result of this comparison they showed almost similar surfaces. The events of the phenomenon La Niña o El Niño do not imply a prediction of the behavior of rainfall, a rainy ordry year respectively, it does not even imply that occur with the same intensity throughout the Altiplano, as there factors that affect local exposure such as physiography , environmental conditions, etc. However, it also depends on the origin of the phenomenon, this happens because the ubication of the great mass of warm water, it makes the flow gush location, or the storm path change. As a consequence some regions are warmer, colder, wetter, drier, or even normal. What happened in the selected years of study, when a La Niña year (88/89) was very dry (87,5 mm and 230,8 mm Uyuni, Patacamaya) than normal (180,6 mm and 406,1 mm Uyuni, Patacamaya). Or El Niño year (97/98) in which Patacamaya had more precipitation (480.7 mm) than a normal year (406.1 mm) and Uyuni registered less rainfall (27.5 mm) than in a normal year (27.5 mm). Then it indicates that El Niño and La Niña events do not express on the same intensity or location every time. During the study, three periods are defined. First, the 80's when quinoa production suffers adverse effects by continuous droughts, besides there was a lack of technical support and responding to such disasters, these conditions forced to reduce or maintain the surfaces of quinoa. Second, the 90's when the climatic conditions are more favorable related to rainfall. Moreover, there was technical support and equipment to improve production, then it makes quinoa surfaces increase. Finally, the beginning of 2000 and according to the PDM 's, the agricultural areas increased with the support of technology, and the increase of quinoa price as well; those factors motivated to increase their surfaces. It is important to remark that the dynamics of change in land use is related to the precipitation which allows gains and losses on coverages. The identified patterns of change are the farmers pass from dense o moderate grassland cultivated by quinoa. In this regard Vallejos (s / f) mentioned thattype of grassland which covers soils are the priority for new production areas quinoa.

Keywords : Quinoa; Landsat; La Niña Phenomenon; El Niño Phenomenon; Land use.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License