SciELO - Scientific Electronic Library Online

 
vol.6 número2Prevalencia de Sarcocystis spp. en musculo cardiaco de llamas (Lama glama) y alpacas (Vicugna pacos)Calidad del ensilaje de avena forrajera (Avena sativa L.) conservado en tres diferentes tipos de silos artesanales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Journal of the Selva Andina Animal Science

versión impresa ISSN 2311-2581

Resumen

MERLO-MAYDANA, Flavio Eudaldo1* et al. Chilliwar Festuca dolichophylla pasture in situ degradation an alternative for animal feed. J.Selva Andina Anim. Sci. [online]. 2019, vol.6, n.2, pp.47-56. ISSN 2311-2581.

Abstract The objective was to evalúate the kinetics of degradation in the first compartment (C1) of llamas of the dry matter (DM) of forage F. dolichophylla harvested at 3, 6, 9, 12 and 15 weeks of growth during two seasons (rainy and dry). The degradation kinetics of crude protein (PC), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were evaluated only in the rainy season. In situ degradation was described by the equation of Ørskov et al., (1980) D = a + b (1-exp-ct). A completely randomized block design with a 2 x 5 factorial arrangement was used for the MS. The rate (c) 3.24% h-1, intercept of the curve (a) 22.22%, and the degradation potential of MS (a + b) 91.32%, were not affected (P> 0.05) by the time, age and interaction. However, the effective DM degradation (estimated with a flow rate of k = 2% h-1) was affected (P <0.05) by time and age. The effective degradation of DM decreased 13.9 and 10.7% from 3 to 15 weeks of growth for the rainy and dry seasons, respectively. The degradation rates of PC, 6.7% h-1, NDF, 3.9% h-1 and the FDA, 3.6% h-1, were not affected (P> 0.05) by the age of growth. However, the potential and effective degradation (k = 2% h-1) was influenced by the age of growth, ranging from 97.7 to 90.1%, 86.0 to 80.8%, and from 72.4 to 71.9% from 3 to 15 weeks of increase. The effective degradation of PC, NDF and ADF was affected (P <0.05)bythe agethe a of growth, decreasing from 88.6 to 63%, 63.5 to 57.1%, and from 51.7 to 40.3% from 3 to 15 weeks of growth. It is concluded that the accelerated degradation of the protein at early hours, and low degradation of cell walls causes an imbalance invailability of protein and absence of energy.

Palabras clave : Chilliwa; seasonality; maturity; kinetics of degradation; quality of native grass.

        · resumen en Español     · texto en Español     · Español ( pdf )