Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Similars in SciELO
Share
Acta Nova
On-line version ISSN 1683-0789
Abstract
RODRIGUEZ VILLARROEL, Juan Pablo; PONCE DE LEON ESPINOZA, Nicolás and ARTEAGA SABJA, Wendoline. Redes neuronales multicapa y convolucionales para el reconocimiento del lenguaje de señas boliviano: una evaluación empírica. RevActaNova. [online]. 2021, vol.10, n.1, pp.22-41. ISSN 1683-0789.
La comunidad de sordos es un estrato social con muchas luchas en la vida diaria, principalmente causa de dificultades de comunicación con el público en general. Aunque cada país tiene su lengua de signos, como es el caso de la Lengua de Signos Boliviana (BSL). Sin embargo, pocas personas lo saben. Se han propuesto diferentes enfoques para realizar reconocimientos de gestos y ayudar a las personas a traducir el lenguaje de señas a un idioma en particular, incluidas las redes neuronales. Sin embargo, se sabe poco sobre la efectividad de las redes neuronales para detectar el lenguaje de señas boliviano (BSL). Este artículo propone y evalúa el uso de dos técnicas de redes neuronales, multicapa (MLP) y convolucional (CNN), para reconocer el lenguaje de señas boliviano. Nuestro enfoque toma como entrada los fotogramas más significativos de un video utilizando un algoritmo basado en movimiento y aplicando un algoritmo de detección de bordes en los fotogramas seleccionados. Presentamos un experimento en el que evaluamos estas técnicas utilizando 60 videos de cuatro frases BSL básicas. Como resultado, encontramos que MLP tiene una precisión que varía entre 65% y 88%, y CNN varía entre 95% y 99%, dependiendo del número de neuronas y capas internas utilizadas.
Keywords : red neuronal multicapa; redes neuronales convolucionales; visión por computadora; reconocimiento de lenguaje de signos; BSL.