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ABSTRACT

This is the twelfth theoretical assay in the series: “The Organic Chemistry Notebook Series, a Didactical Approach”.
The aim of this series of studies is to help students to have a graphical view of organic synthesis reactions of

diverse nature. We have taken a series of reactions compiled by W. Carruthers in ‘Some modern methods of organic
synthesis’, and we have proposed didactical and mechanistic views for them. This theme is included in the chapter
“Formation of carbon-carbon double bonds” in the mentioned text.

In the present chapter we expose more Claisen rearrangements variations. The Claisen rearrangement can be
regarded as a particular case of Cope’s rearrangement, hence, on the basis of the structural theory and the known
mechanisms of organic chemistry, we have proposed theoretical mechanisms for the synthesis of dienes from 2-
methyl-3-phenyl-1,5-hexadiene at low temperature. We have proposed a mechanism for the synthesis of -
unsaturated aldehydes and ketones through the oxy-Cope rearrangement of 1,5-hexadienes. We’ve described the
mechanism for the key step of the synthesis of the sesquiterpene (±)-juvabione. The mechanistic views of the
synthesis of the natural germacrane sesquiterpenes are proposed. We have proposed a mechanism for the thio Claisen
rearrangement of allyl vinyl sulfides in the transformation into-unsaturated carbonyl compounds, for example the
preparation of 4-tridicenal and the [2,3]sigmatropic rearrangement of allylsulphonium ylids like in the preparation of
-cyclocitral.
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Spanish title: Reordenamiento de Claisen de éteres alíl vinílicos para dar alquenos: parte IV; propuestas
mecanicistas teóricas; serie el cuaderno de química orgánica, un enfoque didáctico, N°12. Este es el
duodécimo ensayo teórico en la serie: “El cuaderno de química orgánica, un enfoque didáctico”.

El objetivo de esta serie de estudios es ayudar a los estudiantes a disponer de una visión gráfica de reacciones
de síntesis orgánicas de diversa naturaleza. Hemos tomado una serie de reacciones compiladas por W. Carruthers en:
‘Some modern methods of organic synthesis’, para las cuales hemos propuesto vistas mecanicistas y didácticas. Este
tema está incluido en el capítulo “Formation of carbon-carbon double bonds” del mencionado texto.

En el presente capítulo exponemos más variaciones del reordenamiento de Claisen. El reordenamiento de
Claisen puede ser considerado como un caso particular del reordenamiento de Cope, por lo tanto, hemos propuesto
mecanismos teóricos basados en la teoría estructural y los mecanismos conocidos de la química orgánica, para la
síntesis de dienos a partir de 2-metil-3-fenil-1,5-hexadieno a bajas temperaturas. Hemos abordado por mecanismos la
síntesis de aldehídos y cetonas insaturados en a través de transposiciones oxy-Cope de 1,5-hexadienos. Hemos
descrito el mecanismo del paso clave de la síntesis del sesquiterpeno (±)-juvabione. Las vistas mecanicistas de la
síntesis de los productos naturales sesquiterpenos del germacrane se hallan propuestas. Hemos propuesto un
mecanismo para la transposición del tipo tio-Claisen de sulfuros de alilivinilo en la transformación en compuestos
carbonilo -insaturados, como la preparación del 4-tridecenal y el reordenamiento [2,3]-sigmatrópico de ilidos
alilsulfonios como en la preparación de -ciclocitral.

INTRODUCTION

Master classes of organic chemistry showed us the difficulties experimented by students due to lack of knowledge of
classical mechanisms. A mechanistic proposal is naturally mandatory if a rational explanation of products emerging
from a synthesis is going to be formally accepted and understood. As academics we are committed with the didactics
and we have designed a series of articles exposing mechanistic theoretical proposals, articles have a character of
review, meaning thus the use of published works on varied themes on synthesis. The present contribution:
mechanistic theoretical proposal of Claisen rearrangement of allyl vinyl ethers to afford alkenes, part IV, is the
twelfth study in the series: “The Organic Chemistry Notebook Series, a Didactical Approach” [1-11].

REVIEW AND DISCUSSION BY MEANS OF MECHANISTIC THEORETICAL PROPOSALS

The Claisen rearrangement of allyl vinyl ethers can be considered as one case of the Cope [3,3]-sigmatropic
rearrangement of 1,5-hexadienes [1,12,13,14]. See Figure 1. In laboratory, the Cope rearrangement requires high
temperatures to proceed [12]. More recently, experiments demonstrated that the temperature factor can be
dramatically diminished (until room temperature) by means of the use of catalytic amounts of palladium chloride
bis(benzonitrile) complex [12,15]. As an example let’s mention the use of 2-methyl-3-phenyl-1,5-hexadiene 35 with
a catalytic quantity of PdCl2(PhCN)2 (in THF, rt, 24 hs.) to synthesize the dienes 36 and 37; yield was 87% and the
ratio was: 97:3. The change of THF for benzene conducted the reaction in one hour instead of 24 hs. On the contrary
the Cope rearrangement (under thermal conditions) of 35 gave rise to products poor in stereoselectivity and with the
inconvenience of the elevate temperature [16]. See Figures 2 and 3 for the reaction scheme and the corresponding
mechanistic proposals.

Figure 1. The thermal Cope rearrangement reviewed by W. Carruthers [16]

Comments

Figure 2 shows the hypothetical fully stereoselective synthesis of (1E)-2-methyl-1-phenyl-1,5-hexadiene (37) and
(1Z)-2-methyl-1-phenyl-1,5-hexadiene (36) from (3S) and (3R)-2-methyl-3-phenyl-1,5-hexadiene (35), respectively.
This scheme (Fig. 2) is only for didactical purposes, to show that 37 comes from (S)-35 and 36 from (R)-35,
hypothetically considering that the Claisen rearrangement is completely stereoselective en each case. However, the
departure from any of the enantiomeric forms of 35 gives both stereochemical isomers: 36 and 37 in different
proportions. This fact implies the fact of free rotation between any of the forms conducting to the positioning of the
phenyl group in an axial or in an equatorial orientation. On the one hand, this means that the transition state in the
chair form of the C.R. clearly exhibits the partial existence of the new bonds being formed ( and ) and the partial

[16]
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disintegration of old bonds ( and ). In such status, when the overlapping of p orbitals of the forming or the dis-
overlapping of the disappearing  bonds is not completed, the rotation around a sigma bond is feasible. This situation
makes possible the rotation of the phenyl substituent at C-3. The rotation is feasible around the C2-C3 bond, once
partially disappeared the bond C3-C4 and no completely formed the  bond between the C2-C3 bond of 35. The
transition state of the partially stereoselective C.R. of 35 is described in Fig. 3. We must notice (Fig. 3) that the fact
of being in the presence of a pericyclic reaction, implies, by the way, that in order to impulse the rearrangement there
must be the appropriate degree of overlapping between p contiguous orbitals.
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Figure 2. Hypothetical fully stereoselective Claisen rearrangement of (3S)-2-methyl-3-phenyl-1,5-hexadiene into (1E)-2-
methyl-1-phenyl-1,5-hexadiene and fully stereoselective C.R. of (3R)-2-methyl-3-phenyl-1,5-hexadiene into (1Z)-2-methyl-1-

phenyl-1,5-hexadiene reviewed by W. Carruthers [16]. Theoretical mechanistic proposals by the authors
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Figure 3. Partially stereoselective Claisen rearrangement of (3S)-2-methyl-3-phenyl-1,5-hexadiene into (1E)-2-methyl-1-
phenyl-1,5-hexadiene or partially stereoselective C.R. of (3R)-2-methyl-3-phenyl-1,5-hexadiene into (1Z)-2-methyl-1-phenyl-

1,5-hexadiene reviewed by W. Carruthers [16]. One-step concerted pericyclic mechanism. Theoretical mechanistic proposals by
the authors

[16]
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This fact is indeed, an impeachment to free rotation around bonds. On the other hand, if the character of the
rearrangement is not pericyclic, it´s then ionic. Under the scope of the formation of ions (anion and cation) in the
intermediates of the ionic transition state, rotation is easier than in the concerted pericyclic mechanism (there is not
overlapping of contiguous p orbitals). If instead of a concerted one-step rearrangement, we propose an ionic one,
then we have a not-concerted two-steps process. Let us notice as well that free rotation in the ionic transition state
does not forcedly implies a full stereoselectivity and that we must contemplate the possibility of a not necessarily
equal percentage distribution of the stereo isomers: (1E)-2-methyl-1-phenyl-1,5-hexadiene (37) and (1Z)-2-methyl-1-
phenyl-1,5-hexadiene (36) (a racemic mixture). This theoretical approach seems to suggest that the Claisen
rearrangement of (3S)-2-methyl-3-phenyl-1,5-hexadiene or of (3R)-2-methyl-3-phenyl-1,5-hexadiene does not
proceed via a concerted one-step pericyclic transition state but instead via a two-steps not-concerted ionic transition
state. See Fig. 4. The ionic transition state in Fig. 4 is firstly stabilized by the catalyst palladium and secondly by
mutual electrostatic attraction between opposed charges in both, the propene, and the 2-methyl-3-phenyl-propene
moieties. From experimental results it is evident that the speed of the electronic movement in the hypothetical ionic
transition state that conducts to the Claisen compound is higher to that which conducts to the formation of the two
much tensioned fused cicyclobutanes derived from the coupling of opposite charges.
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Figure 4. Partially stereoselective Claisen rearrangement of (3S)-2-methyl-3-phenyl-1,5-hexadiene into (1E)-2-methyl-1-
phenyl-1,5-hexadiene or partially stereoselective C.R. of (3R)-2-methyl-3-phenyl-1,5-hexadiene into (1Z)-2-methyl-1-phenyl-

1,5-hexadiene reviewed by W. Carruthers [16]. Two-steps not-concerted ionic mechanism. Theoretical mechanistic proposals by
the authors

The rearrangement of 3-hydroxylated 1,5 dienes known as the oxy-Cope rearrangement [1] is suitable for the
synthesis of -unsaturaded ketones or aldehydes (See Fig. 5). When positions 3 and 4 of the diene are hydroxylated,
the product is a 1,6-dicarbonyl compound. See Fig. 5. The rearrangements can be made much faster by the adding of
KOR instead of KOH; the metal ion (K+), once ionized and solvated and free of the oxyanion [17,18,19].
Rearrangements follow a chair-like (or a boat-like) transition state giving high stereoselectivity [17]. The diene 38
transforms into 39, an unsaturated ketone. The isomer 40 was not touched. See Fig. 6.
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Figure 5. The rearrangement of 3-hydroxylated 1,5 dienes known as the oxy-Cope rearrangement [1] is suitable for the
synthesis of -unsaturaded ketones or aldehydes. Reviewed by Carruthers [16]

[16]
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Carruthers [17]. Theoretical mechanistic proposals by the authors

Comments

The driving force in the oxy-Cope rearrangement of 38 into 39 is due to the stereochemical form in 38 (Fig. 6) with
the terminal vinyl with an  stereochemistry (axial position) inducing the electronic attack coming from the cyclic
alkene. Such terminal vinyl axial position is propitious for the opposite charges attraction that appears once the boat-
like transition state is formed. Thus the one-bond distance in the space between opposite charges makes possible the
expected or observed cyclisation, or compound 39. Let us signal at this point that the isomer 40 would exhibit a
carbanion extreme (developed over the terminal vinyl), placed too far away from the carbocation making thus
impossible the opposite charges attraction in the bipolar species by means of the covalence formation. This is the
reason for the isomer 40 to rest untouched in the oxy-Cope rearrangement.

The synthesis of (racemic)-juvabione, a natural sesquiterpene, biomimetic of the juvenile hormone [20], shows
its key step where the diene 41 affords the cyclohexanone with high stereoselectivity (77% yield) [17,19]. See Fig. 7.
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Comments

The side chain of the cyclohexene 41 accommodates in such a manner with respect to the cycle that together form a
boat-like transition state, with the double bonds face-to-face. This is the only way to provoke a rearrangement; the
mechanism in Fig. 7 shows two forms of the transition state in which negative and positive charges are localized.
These two forms present the terminal methyl group in opposite sides. One converts into another by free rotation
around the bond between the carbocation and its vicinal sp2 carbon. However, the real mechanism is supposed to be
pericyclic. Anyway, the free rotation is feasible only under the perspective of localized charges instead of
overlapping orbitals p. Here again, we find two contradicting concepts inherent to rearrangements as previously
exposed in this paper (cf. Fig. 3 and 4).

This mechanism is applicable to any other similar synthesis example, like the synthesis of sesquiterpenes v.g.
the synthesis of germacrenes or derivatives like 42 which use rearrangements like those showed in in Fig. 8
mechanistically exposed in the same figure [17,21,22]. The alkaline conditions for reactions described in Fig. 6, 7
and 8, are not applicable to substances reactive to alkalis. Instead, the rearrangements can be achieved in neutral
media at room temperature by the using of catalytic quantities of Pd-Cl-bis(benzonitrile) complex [17,23].
Alternatively, Hg-bis(trifluoroacetate) in watered THF followed by demercuration by NaBH4 [17,24] or Li-
bis(trifluoroacetate) [17,25] can be used.
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Figure 8. The oxy-Cope rearrangement of the 1,5 diene into a sesquiterpene of the germacrene type 42 (The “exo” form). The
“endo” from (42’). Reviewed by Carruthers [17]. Theoretical mechanistic proposals and comments by the authors

Comments

In Fig. 8, mechanism A follows a strict pericyclic cyclisation concept which includes the overlapping of orbitals p
contiguous, thus the forming and extinction of covalent bonds ( and ) are simultaneous. Under such optic, a
transition state in a chair-like shape is formed and this transition state conducts to compound 42’. A 3D model of 42’
has been constructed using Prentice Hall Framework Molecular Models (photo in Fig. 8). This 3D model (42’)
exhibits a strong steric hindrance between the carbonyl system and the C9=C10 bond (numbering adopted from
decaline structure). Thus if a pericyclic process takes place, the “endo” carbonyl conformer results (see Fig 8.
Mechanism A). Since this “endo” form implies high instability due to the hindrance of carbonyl and C9=C10, then the
system has to evolve somehow towards a more stable conformer, namely the conformer “exo” or compound 42.
Mechanism B of Fig. 8 shows how the ionic process can easily conduct to the conformer “exo” when after formed

42 42’
;
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the carbanion and the carbocation a simple rotation and ulterior overlapping of sp2  sp3 orbitals forms a new
covalence (Csp2

7, Csp2
8  Csp3

7-Csp3
8). We have two options, firstly, a pericyclic (or more precisely, sigmatropic)

mechanism that conducts to the strained and hence instable product 42’, which should be forced somehow to evolve
to the more stable conformer “exo”, but without cycle excision (Fig. 8, A.), and alternatively, the ionic process which
seems more feasible and that easily affords the more relaxed and stable product 42 (Fig. 8, B.). The couple of 
systems composed by the carbonyl group and the C3=C4 double bond, present coordination (parallelism of the four p
orbitals) in compound 42 (“exo” form in Fig. 8). The other double bond C9=C10 presents as well parallelism of
orbitals p with the other two  systems in 42 (“exo”) even though they are not coordinated indeed. Compound 42’
(“endo” in Fig. 8) presents the C=O and C3=C4 in coordination (parallelism of the four p orbitals), however from the
model, the hindrance between the carbonyl and C9=C10 is so evident that it induces us thinking that such conformer is
highly improbable; the parallelism of the three  systems is also present in 42’. These aspects of the reaction demand
a longer meditation and analysis about the pericyclic concept of the Claisen rearrangement versus the ionic
alternative.

The Claisen rearrangement also takes place with sulfur compounds. Thus, allyl vinyl sulfides can convert by
hydrolysis into -unsaturated carbonyl compounds [17,26]. A remarkable feature of this reaction regards an
alkylation that can be done over the carbon contiguous to the Sulfur just before the rearrangement occurs, as for
instance with the synthesis of 4-tridecenal (43) from allyl vinyl sulfide (Fig. 9) [26].
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Figure 9. Conversion of allyl vinyl sulfides into -unsaturated carbonyl compounds the synthesis of 4-tridecenal from allyl
vinyl sulfide [26]. Theoretical mechanistic proposals and comments by the authors

Comments

Again, as well as for the precedent examples we face the dichotomy of two mechanisms, this time less mutually
contradictory due to the equal facility to afford the final result (Fig. 9). Now, there aren’t implied any neither
stereochemical nor conformational isometry.

Another reaction similar to the rearrangement of allyl vinyl sulfides is the synthesis of allylsulphonium ylids by
means of the [2,3]sigmatropic rearrangement. This is the case for the formation of -cyclocitral, 44, [26]. This
reaction and its mechanistic interpretation is shown in Fig. 10.
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Figure 10. Rearrangement of allyl vinyl sulfides: synthesis of allylsulphonium ylids by means of the [2,3]sigmatropic
rearrangement. The example of the formation of -cyclocitral, 44, [26]. Theoretical mechanistic proposals and comments by the

authors

Comments
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This general mechanism (Fig. 10) consists of the following steps: the allyl vinyl sulfide suffers an excision of a good
leaving group at the  position of sulfur. The carbanion formed thus is less basic than sulfur and this last attacks as
nucleophile over the carbon directly linked to an alkyl halide to establish a new S-C bond. At this stage we are in the
presence of a bipolar species which collapses into an allylsulphonium ylid by means of a [2,3]sigmatropic
rearrangement which can be envisaged as a pericyclic or an ionic process.

The synthesis of 44 implies the nucleophilic attack of sulfur from dithiane (C4H8S2) to the alkyl bromide to
expel this last and establish a new S-C bond with the consequent sulfur cation formation. The treatment of the
substrate with the strong base n-butane lithium, extracts an acidic hydrogen of the methylene vicinal to both sulfur
atoms of the dithiane cation. The carbanion obtained converts the intermediate in a bipolar species. This last is in
equilibrium with the other form of this intermediate, namely the dithiane unsaturated. Two consecutive 120°
rotations of the CH-dithiane group with respect to the cyclohexene, places the S=C double bond of the dithiane
unsaturated faced to the C=C double bond of cyclohexene. This is a propitious conformation to effect a sigmatropic
Claisen rearrangement to afford the adduct: cyclohexene-dithiane. The alternative ionic rearrangement implies
delocalization of the  electrons of the double bond S=C to regenerate the dipole which disappears by the
nucleophilic attack of the carbanion to one extreme of the C=C of cyclohexene to form a  bond. The end of the
process comes with hydrolysis of the dithiane group and the generation of 44.
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