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RESUMEN

En este trabajo consideramos una función hamiltoniana de enlace fuerte extendida a primeros
y segundos vecinos para una partı́cula cargada que se transporta por saltos (hopping) en una red
cuadrada en presencia de un campo estático arbitrario y un campo uniforme rápidamente oscilante
con frecuencia ω. La aplicación del método semiclásico y el método de Kapitza de promediación
temporal hasta O(ω−2) conduce a una función hamiltoniana efectiva (independiente del tiempo)
con elementos de salto que dependen de los parámetros de los campos externos. Controlando dichos
parámetros podemos manipular las interacciones de tal forma de emular un sistema fı́sico diferente,
en este caso, un circuito LC de dos mallas con carga discreta.

Descriptores: Método de enlace fuerte — modelo semiclásico — sistemas mesoscópicos.

Código(s) PACS: 31.15.aq, 03.65.Sq , 73.23.-b

ABSTRACT

We consider an extended tight-binding Hamiltonian function comprising nearest and next-to-
nearest neighbor interactions for a charged particle hopping in a square lattice in the presence
of a static arbitrary field and a rapidly oscillating uniform field with frequency ω. The application of
the semiclassical method and the Kapitza’s method for time-averaging up to O(ω−2) yields an effec-
tive (time independent) Hamiltonian function with long range hopping elements that depend on the
parameters of the external fields. By controlling these parameters we can engineer the interactions
in such a way as to emulate a different physical system, namely, a two-mesh LC circuit with discrete
charge.

Subject headings: Tight-binding method — semiclassical model — mesoscopic systems.

1. INTRODUCTION

The study of effective Hamiltonians in solid state
physics, derived with time-averaging procedures (orig-
inally due to P. L. Kapitza for the study of the in-
verted pendulum Kapitza (1965); Landau (1985) applied
to tight-binding lattices, has recently acquired interest
given the feasibility of managing (engineering) the hop-
ping elements when the lattice is subject to external and
rapidly oscillating driving fields. Some of the effects rel-
evant for transport phenomena include, for example: dy-
namic localization, coherent control of tunneling, metal-
insulator transitions, atomic motion in atom traps, ef-
fective next-to-nearest neighbor interactions and effec-
tive Bloch oscillation (Dunlap 1986; Rahav 2003; Bandy-
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opadhyay 2008; Itin 2014, 2015; Mamani 2017). The
idea of using an extended tight-binding Hamiltonian
with a kinetic energy of the form 2

∑
n An cos(nak) can

be traced back to the work of Dunlap and Kenkre, (Dun-
lap 1986) where their results concerning dynamic lo-
calization are extended to long-range interactions in a
1D lattice with hopping elements An and lattice con-
stant a. The case where all the interactions are con-
sidered led to the new concept of exact dynamic local-
ization in the presence of an AC electric field (Dignam
2002). Such a concept of “band engineering” with long-
range interactions has been also investigated (theoret-
ically and experimentally1 in optical lattices; Longhi

1 Many of the current theoretical models do not take into account

some real physical effects (for simplicity), such as interband tran-

sitions, dispersion of the hopping particle by thermal collisions and

phononic interactions, loss of crystal periodicity, etc., due which the

particle’s wavepacket usually decoheres rapidly and the observation
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(2010); Madison et al. (1998) reported the first obser-
vation of dynamical suppression of the band due to an
external AC field in an optical lattice whereby the band-
width shrinks to zero and the Bloch states become lo-
calized when the field amplitude meets a condition that
was also derived in Mamani et al. (Mamani 2017) using
the semiclassical method.2 More recent investigations in
layered graphene systems show that the effects derived
from an extended tight-binding Hamiltonian can be con-
sidered as improvements to the usual nearest neighbor
model results (Reich 2002; Kundu 2011; Wright 2009;
Kadirko 2013).

In this work we use an extended tight-binding Hamil-
tonian where the long-range interactions correspond to
a bidimensional system, namely, an square lattice; then,
we set about establishing a formal equivalence between
that lattice and a two-mesh LC circuit with discrete
charge by means of deriving and comparing their cor-
responding effective Hamiltonians (the case of a 1D lat-
tice and its relation to the single-mesh LC circuit with
discrete charge has been already studied by Mamani et
al. (Mamani 2018). We show that such an equivalence is
possible by managing the parameters of the driving os-
cillating field (with frequency ω) acting upon the square
lattice such that the nearest neighbor interactions be-
come effectively suppressed leaving the remanent next-
to-nearest neighbor (2nd neighbor) interactions as the
dominant ones at order ω0 plus the 3rd neighbor in-
teractions at order ω−2. The theoretical framework for
the study of quantum circuits with discrete charge is
referred to Chen and Li (1996) wherein the fundamen-

tal commutator [q̂, φ̂] = i~ is defined: nqe are the dis-
crete eigenvalues of the electric charge operator q̂ (n is
an integer and qe is the elementary electronic charge),

the flux operator φ̂ = −i~∂/∂q is the conjugate of q̂ and

the substitution φ̂ → (2~/qe) sen(qeφ̂/2~) takes into ac-
count the discrete nature of the electric charge (Flores
2005; Calcina-Nogales 2013; Flores 2002). The physi-
cal phenomena associated to these kind of systems have
been reported: persistent currents, Bloch oscillations in
quantum circuits, Coulomb blockade, current magnifi-
cation, voltage and current engineering (Chen and Li
1996; Flores 2005, 2002; Chen 2005; Calcina-Nogales
2020), etc. These cases demonstrate the feasibility of
modeling the physics of mesoscopic devices within the
conceptual framework referred to above.

Although the one-dimensional and the square tight-
binding lattices do not exist as such (to our knowl-
edge), it seems that the reported discrete-charge meso-
scopic systems would be soon technicaly feasible, thus,
permitting the posibility of testing the predictions de-

–for example– of Bloch oscillations is restricted to a few complete peri-

ods (c.f.: Lyssenko et al. (1997); Madison et al. (1998)). In the absence

of such effects, the wavepacket’s width may oscillate and eventually be

restored to its initial value, as shown, e. g., by Dignam and de Sterke

in the exact dynamic localization effect (Dignam 2002).
2 A concise and pedagogical justification of the semiclassical method

for a general periodic potential can be found, for example, in Ch. 12 of

Ashcroft and Mermin (1976)

duced from comparing both systems. In this sense, the
semiclassical method together with the time-averaging
techniques provide an easier and more straightforward
way of deriving an effective Hamiltonian, as we could
in fact verify in the derivation of the quantum effec-
tive Hamiltonian of the two-mesh LC circuit (Calcina-
Nogales 2020). Besides, the semiclassical method also
provides a bifurcation condition already studied in the
one-dimensional lattice (Mamani 2018) and suggested
in the two-dimensional case (in this work) that could
be useful for predicting the transition between different
electronic dynamical regimes.

The organization of our work is the following: in Sec-
tion 2 we derive the effective Hamiltonian for a square
lattice using the time-averaging technique and extend-
ing the procedures we have already used for the one-
dimensional lattice (Mamani 2017); in Section 3 we ap-
ply the results of the previous section to the managing
of the effective Hamiltonian hopping elements so as to
emulate case of the two-mesh LC circuit with discrete
charge; finally, in Section 4 we present the most impor-
tant concluding remarks and point out some directions
for future research.

2. DERIVATION OF THE EFFECTIVE HAMILTONIAN FOR THE

SQUARE LATTICE

Consider the extended tight-binding Hamiltonian
function with nearest-neighbor and next-to-nearest
neighbor interactions for an independent test particle
with charge qe (i.e., we do not consider any possible in-
teraction with like particles whatsoever neither the par-
ticle affects the distribution of the external electric fields
acting upon it) which hops in a square lattice with cells
of side a under the action of external electric fields,

H (x, y, kx, ky; t) = −2A cos(akx)− 2B cos(aky)

−2C cos(akx) cos(aky) + qer · f(ωt) + V (r). (1)

The tight-binding band in the Hamiltonian (1) has the
standard form −∑

m,n γm,n cos(k · Rm,n) where k =

(kx, ky) and Rm,n = a(m,n); the hopping elements are
A = γ0,±1 = γ±1,0 for the nearest neighbors and C =
γ±1,±1 = γ±1,∓1 for the next-to-nearest neighbors. In the
following derivation, and in order to deal with a more
compact notation, we take unitary numerical values for
the lattice constant a and for the physical constants qe,
~. V (r) is an external arbitrary static potencial energy
at r = (x, y) and f(ωt) = (fx, fy) is the rapidly oscillating
external driving field with frequency ω ≫ 1/T , where T
is the particle’s characteristic period of oscillation in the
absence of the driving field. Without loss of generality
and for the sake of simplicity, we will suppose that the
external electric field f(ωt) is an even function of t.

Although the quantum Hamiltonian corresponding to
(1) with V (r) = 0 has the spatial divergent potential
r · f(ωt), the problem of finding its eigenfunctions has
been already widely treated in terms of the vector poten-
tial representation (Houston 1940; Krieger 1986; Kittel
1987; Rossi 1997) whereby the electric field is f(ωt) =
∂g/∂t, such that the momentum operator is shifted as
p → p+g within the kinetic energy operator. As a conse-
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quence, the “acceleration theorem” ∂k/∂t = f(ωt) is de-
rived strictly quantum-mechanically in agreement with
the semiclassical approach considered in our work.3 For
the case of V (r) 6= 0 in (1), the gauge substitution
g → g + ∇V (r)t is made and the resulting acceleration
theorem becomes ∂k/∂t = f(ωt)−∇V (r).

We use now the Hamilton’s equations which yield the
time derivatives of the position and the momentum:

ẋ =Hkx
= 2A sen kx + 2C sen kx cos ky, (2)

ẏ =Hky
= 2B sen ky + 2C sen ky cos kx, (3)

−k̇x =Hx = fx (ωt) + Vx, (4)

−k̇y =Hy = fy (ωt) + Vy; (5)

we set the notation Vx, Vy, Vxx, Vyy, Vxy = Vyx and
Hkx

, Hky
, Hx, Hy for the derivatives of V (r) and

H (r,k; t) respectively; this notation will apply only to
the Hamiltonian and potential energy functions here-
after. It will be convenient also to use the generic sym-
bol z for either of the coordinates x, y where a sim-
plified expression could be written. Let us now apply
the canonical transformations between the momenta:
(z, kz) → (z, k′z) given by k′z ≡ kz + gz, whereby the “dis-
placed momentum” k′z is defined along with the time in-

tegral of the external field, gz ≡
∫ t

fz(ωt
′)dt′; this is the

realization of the vector potential representation that
yielded k → k + g as projected onto the square lattice
and which was already referred to. The substitution of
these transformations in (2)-(5) yields:

ẋ =2A sen (k′x − gx) + 2C sen (k′x − gx) cos
(
k′y − gy

)
,

(6)

ẏ =2B sen
(
k′y − gy

)
+ 2C cos (k′x − gx) sen

(
k′y − gy

)
,

(7)

k̇′x =− Vx, (8)

k̇′y =− Vy. (9)

Due to the action of the combined static and oscillat-
ing fields, −∇V (x, y) and f(ωt), the particle will move
with small oscillations around a slow varying trajectory.
Thus, we introduce the “slow” Z(t), Kz(t) coordinates
and the “fast” ξz(τ), ηz(τ) coordinates in the direct and
reciprocal spaces respectively; the fast coordinates are
considered perturbations of the slow coordinates:

z(t) = Z(t) + ξz(τ), k′z(t) = Kz(t) + ηz(τ), (10)

where τ ≡ ωt is such that the time-average of ξz(τ),
ηz(τ), vanish in the time interval with period T = 2π/ω
while Z(t), Kz(t), remain almost constant in the same
interval, i.e., 〈ξz〉 = 〈ηz〉 = 0, and 〈Z〉 = Z(t), 〈Kz〉 =
Kz(t). We have used the definition of the time-average

as 〈·〉 = (1/T )
∫ T

0
(·)dt.

3 In this sense, the semiclassical method provides exact results that

coincide with the quantum ones, as we could verify in the above men-

tioned references and also in Dignam and de Sterke,(Dignam 2002)

wherein a study of exact dynamical localization is carried on (we have

work in progress in this direction).

The set of transformations

(x, y, kx, ky) → (x, y, k′x, k
′
y) → (X,Y,Kx,Ky) (11)

is canonical since the structure of Hamilton’s equations
is preserved (Landau 1985):

ż =Hk′

z
(x, y, k′x, k

′
y; t), k̇′z = −Hz(x, y, k

′
x, k

′
y; t),

Ż =HKz
(X,Y,Kx,Ky), K̇z = −HZ(X,Y,Kx,Ky); (12)

this is so as a consequence of the invariance of the Pois-
son brackets: [kz, z] = [k′z, z] = [Kz, Z] = 1 which yields
H(x, y, k′x, k

′
y; t) = H(x, y, kx, ky; t) + ∂F (x, y, k′x, k

′
y; t)/∂t

for some generating function F (x, y, k′x, k
′
y; t) that can be

readily calculated, and the time-averaging which gets
us from H(x, y, k′x, k

′
y; t) to H(X,Y,Kx,Ky). The result-

ing shift of the time dependence from the r · f(τ) term
in H(x, y, kx, ky; t) into the arguments of the kinetic en-
ergy operators in H(x, y, k′x, k

′
y; t) is not only a conve-

nient transformation (in order to get time-averages ef-
ficiently) but it is also a necessary one to render k =
(kx, ky) as a “good quantum number” (Kittel 1987). Now,

H(X,Y,Kx,Ky) ≡ Heff is the form of the effective
Hamiltonian that, as a result of the Hamilton’s equa-
tions, represents a constant of motion and whose ex-
plicit construction will be possible giving the resulting
Eq.(18) at the end of this section. In this work we will
restrict the potential energy to the quadratic form of the
position coordinates V (x, y) = c1x

2 + c2y
2 + c3xy since it

is this kind of function that yields the correct physical
interpretation for Heff as a tight-binding Hamiltonian
(the physical realization of such V (x, y) onto the square
lattice plane would be achieved –in principle– by plac-
ing the plane inside a dielectric cylinder shell with an
specific surface charge distribution); otherwise, if V (x, y)
had the form of a higher degree polynomial function,
Heff could still be a valid Hamiltonian but not with the
form of a tight-binding one (Mamani 2017).

By replacing the time-derivatives of the terms in (12)
into the system (6)-(9) we obtain the system (B1)-(B4) in
Appendix B wherein we applied the time-average tech-
niques that yield the system for the effective dynamical
coordinates:
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(1/2)Ẋ = Ã senKx + 2M̃ sen 2Kx

+ C̃ senKx cosKy + D̃ cosKx senKy

+ Ẽ senKx cos 2Ky + F̃ cosKx sen 2Ky

+ 2G̃ sen 2Kx cosKy + 2H̃ cos 2Kx senKy

+ 2J̃ sen 2Kx cos 2Ky + 2K̃ cos 2Kx sen 2Ky, (13)

(1/2)Ẏ = B̃ senKy + 2Ñ sen 2Ky

+ C̃ cosKx senKy + D̃ senKx cosKy

+ 2Ẽ cosKx sen 2Ky + 2F̃ senKx cos 2Ky

+ G̃ cos 2Kx senKy + H̃ sen 2Kx cosKy

+ 2J̃ cos 2Kx sen 2Ky + 2K̃ sen 2Kx cos 2Ky, (14)

K̇x = −VX , (15)

K̇y = −VY ; (16)

the list of the “tilde” symbols used in (13) and (14) is
defined in the Appendix A.

We now set up about constructing the effective Hamil-
tonian Heff ≡ H(X,Y,Kx,Ky) from the system (13)-
(16). The Hamilton equations in the space of the effec-
tive coordinates Z, Kz must be satisfied:

Ż = Heff
Kz

, K̇z = −Heff
Z ; (17)

the expression for Ż in (17) is substituted from (13), (14)
and combined together with (15), (16) to give

Heff =

− 2Ã cosKx − 2B̃ cosKy − 2M̃ cos 2Kx − 2Ñ cos 2Ky

− (C̃ + D̃) cos(Kx +Ky)− (C̃ − D̃) cos(Kx −Ky)

− (Ẽ + F̃ ) cos(Kx + 2Ky)− (Ẽ − F̃ ) cos(Kx − 2Ky)

− (G̃+ H̃) cos(2Kx +Ky)− (G̃− H̃) cos(2Kx −Ky)

− (J̃ + K̃) cos(2Kx + 2Ky)− (J̃ − K̃) cos(2Kx − 2Ky)

+ V (X,Y ) + Ω, (18)

where Ω is a constant term independent of the dynam-
ical coordinates Z, Kz. It is now clear that the “tilde”
symbols referred to in (13) and (14) constitute the ef-
fective hopping elements characteristic of the effective
tight-binding Hamiltonian Heff in (18).

As a first crosscheck calculation of (18) we can test it
for the case of the null electric field f = 0 and a linear
static potential V (X,Y ) = αX + βY (dropping the con-
stant term Ω):

Heff

= −2Ã cosKx − 2B̃ cosKy

− (C̃ + D̃) cos(Kx +Ky)− (C̃ − D̃) cos(Kx −Ky)

+ αX + βY,

= −2AFx0 cosKx − 2BFy0 cosKy

− CFxmF−ym cos(Kx +Ky)− CFxmFym cos(Kx −Ky)

+ αX + βY,

= −2A cosKx − 2B cosKy − 2C cosKx cosKy + αX + βY.
(19)

By using Hamilton’s equations Ż = Heff
Kz

, K̇z = −Heff
Z

in (17) for Z = X,Y , we obtain

Ẋ = −2A senαt− 2C senαt cosβt,

Ẏ = −2B senβt− 2C cosαt senβt, (20)

which describe, as expected, a 2D Bloch oscillation with
period T = 2pπ/α (p = min(n,m)) for the rational quo-
tient α/β = n/m.

3. INTERACTIONS ENGINEERING AND RELATION TO AN LC

CIRCUIT

With the explicit form of the effective Hamiltonian
Heff in (18) in terms of the Fourier components fzn of
the electric field via (B31), we may ask now which com-
ponents will yield specific values of the effective hop-
ping elements in Heff that determine thus the transport
properties of the particle in a square lattice when acted
upon by the external fields. This is the “interactions en-
gineering” scheme considered in this paper, particularly,
as an extension of the one-dimensional case investigated
by Mamani et al. (Mamani 2017). For the purpose of il-
lustrating such interactions engineering, we choose as a
case study the emulation of an LC circuit with discrete
charge that has an effective Hamiltonian of the form (as
we will see later in this section)

HLC =− 2C̃ cosKx cosKy − 2M̃ cos 2Kx − 2Ñ cos 2Ky

+ V (X,Y ), (21)

where the static potential is the quadratic form
V (X,Y ) ∝ X2 + Y 2 + (X − Y )2 such that its second
derivatives are VXX = VY Y = −2VXY . In this case, and
for the square lattice with A = B, the effective hopping
elements become (Appendix A):
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Ã = AFx0 −ACVXX(FxpFxmFy(m+p)/m
2)ǫ2,

B̃ = BFy0 −ACVXX(FxpFxmFy(−m+p)/m
2)ǫ2,

C̃ = (C/2)(FxmF−ym + FxmFym)

−A2VXX(F−xmFym/m2 − FxmFym/m2)ǫ2,

D̃ = (C/2)(FxmF−ym − FxmFym)

−A2VXX(F−xmFym/m2 + FxmFym/m2)ǫ2,

Ẽ = −F̃ = ACVXX(FxpFymFy(−m+p)/m
2)ǫ2,

G̃ = −H̃ = ACVXX(FxpFxmFy(m+p)/m
2)ǫ2,

J̃ = −K̃ = (C2/2)VXX(FxpFxqFy(m+p)Fy(−m+q)/m
2)ǫ2,

M̃ = (A2/2)VXX(FxmF−xm/m2)ǫ2,

Ñ = (A2/2)VXX(FymF−ym/m2)ǫ2; (22)

sums are performed on the terms with the repeated in-
dices m, p, q and the variable m. Since our pertur-
bative calculations were performed consistently up to
second order in ǫ ≡ 1/ω, the effective hopping ele-
ments in (22) can be expressed as combinations of the

zeroth (dominant) and 2nd order terms: Ã = Ã(0) + Ã(2),

B̃ = B̃(0) + B̃(2), C̃ = C̃(0) + C̃(2), D̃ = D̃(0) + D̃(2),

Ẽ = Ẽ(2), G̃ = G̃(2), J̃ = J̃ (2), M̃ = M̃ (2), Ñ = Ñ (2).
Now, the Fzm terms in (22) depend on the specific oscil-

lating electric field f = (fx, fy) through its Fourier com-
ponents. For the purpose sought in this work, we find
that those components should be

fx(ωt) = 2fx1 cos(ωt) + 2fx2 cos(2ωt),

fy(ωt) = 2fy1 cos(ωt) + 2fy2 cos(2ωt). (23)

Then, the expression for Fzm in (B31) readily becomes

Fzm =
∑

p

Jm−2p(2fz1)Jp(fz2); (24)

notice the property F(−z)m = Fz(−m) ≡ F−zm. In order to
solve the infinite sum in (24) and verify its convergence,
we use the integral representation for Jn(z):

Jn(z) =
i−n

π

∫ π

0

eiz cos θ cos(nθ)dθ. (25)

Replacing this Jn(z) in Fzm and using
∑

p exp[ip(C +

φ)] = πδ(C + φ) (for 0 < φ < π) we obtain

Fzm =
i−m

π

∫ π

0

e2ifz1 cos θ cos[mθ + fz2 sen(2θ)]dθ. (26)

Now, we set fx2 = fy1 = 0 in (23) as the condition to find

the required form of HLC (D̃(0) = 0 in this case) with the
parameters fx1, fy2 such that:

FIG. 1.— Representations of the interactions in the square lattice

(from left to right): the time-dependent Hamiltonian H in (1), the ef-

fective Hamiltonian Heff in (18), the Hamiltonian HLC in (29) ob-

tained by choosing specific values of the external fields (interactions

engineering).

Ã(0) = 0 → Fx0 = 0 → J0(2fx1) = 0,

B̃(0) = 0 → Fy0 = 0 →
∫ π

0

cos[fy2 sen(2θ)] dθ = 0; (27)

then, we chose from the set of solutions {fx1, fy2} of (27)

those which satisfy the condition that Ã(2), B̃(2), Ẽ, G̃, J̃

should be negligible as compared to M̃ and Ñ . One way
of doing this is to calculate the euclidian norm

∆(fx1, fy2) ≡
√

(Ã(2))2 + (B̃(2))2 + (Ẽ)2 + (G̃)2 + (J̃)2

(28)

such that ∆/M̃+∆/Ñ attains a minimum value for neg-

ative values of C̃, M̃ , Ñ . Thus, with this condition and
those of (27) fulfilled, the effective Hamiltonian in (18)
becomes

Heff =

− 2Ã(2) cosKx − 2B̃(2) cosKy − 2M̃ cos 2Kx − 2Ñ cos 2Ky

− (C̃ + D̃(2)) cos(Kx +Ky)− (C̃ − D̃(2)) cos(Kx −Ky)

− 2Ẽ cos(Kx − 2Ky)− 2G̃ cos(2Kx −Ky)

− 2J̃ cos(2Kx − 2Ky) + V (X,Y )

∼= −2C̃(0) cosKx cosKy − 2M̃ cos 2Kx − 2Ñ cos 2Ky

+ V (X,Y ), (29)

thus attaining the required approximation HLC
∼= Heff .

Fig. 1 shows an schematic representation of the inter-
actions in the square lattice (from left to right): the
time-dependent Hamiltonian H in (1) is transformed
into the effective Hamiltonian in Heff (18) (with all the
reparametrized and induced interactions) by the action
of the external oscillating and static fields and, finaly, by
choosing specific values of the those fields (“interactions
engineering”), the Hamiltonian HLC in (29) is obtained.

The numerical results found from (27) and (28) within
the interval 0 < fx1, fy2 < 100 (with physical units re-
stored) are
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FIG. 2.— Two-mesh LC circuit.

(qea/~ω){fx1, fy2} = {16.887, 5.519},
C−1C̃(0) = −0.060,

[VXXA2a2/(~ω)2]−1M̃ = −0.021,

[VXXA2a2/(~ω)2]−1Ñ = −0.028,

[VXXACa2/(~ω)2]−1Ã(2) = 0.002,

[VXXACa2/(~ω)2]−1B̃(2) = −0.002,

[VXXACa2/(~ω)2]−1Ẽ = 0.001,

[VXXACa2/(~ω)2]−1G̃ = 0.002,

[VXXC2a2/(~ω)2]−1J̃ = 0.005,

∆/M̃ +∆/Ñ = 0.440. (30)

We expect that VXXA2a2/(~ω)2 has an upper bound in

order to have consistent results, i.e., C̃(0) dominant with

respect to M̃ and Ñ . This is of course the case when
ω → ∞ but, as we will see at the end of this section,
ω must also have an upper bound if an analogy between
the square lattice and the LC circuit is to be achieved.
We think that values of the physical parameters can be
found that meet reasonably such a requirement.

We now set up about describing the LC circuit de-
picted in Fig. 2. Following the construction of the quan-
tum Hamiltonian operator for a two-ring system (Flores
2002), we can construct the Hamiltonian function of a
two-mesh LC circuit with discrete charge qe as

H(q1, q2, φ1, φ2, qe; t) =

2~2

L1q2e
sen2

(
φ1qe
2~

)
+

2~2

L2q2e
sen2

(
φ2qe
2~

)

+
2~2

L3q2e
sen

(
φ1qe
2~

)
sen

(
φ2qe
2~

)

+
q21
2C1

+
q22
2C2

+
(q1 − q2)

2

2C3
+ q1f1(ω

′t) + q2f2(ω
′t), (31)

which follows from the replacement of the magnetic
flux as φi → (2~/qe) sen(qeφi/2~) in the corresponding
continuous-charge Hamiltonian function

Square lattice Two-mesh LC circuit

a = 100 Å qe ∼= 1.6× 10
−19 C

ω = 10
12 Hz ω′

= 1.934× 10
13 Hz

fx1 = 1.055× 10
6 V/m f1 = 6.249× 10

−3 V

fy2 = 0.345× 10
6 V/m f2 = 0

VXX = 2× 10
−6 J/m2 C1 = C2 = C3

= 2.56× 10
−16 F

A,C = 10
−3 eV

C̃(0)
= −0.060A L′

1 = L′
2
∼= 0.4L′

3

M̃ = −0.021A L′
3 = 9.766× 10

−8 H

Ñ = −0.028A

TABLA 1

NUMERICAL VALUES OF THE PHYSICAL PARAMETERS. THE VALUES

OF a, ω,A,C WERE CHOSEN SO AS TO RESEMBLE TYPICAL VALUES

IN A GAAS-TYPE SEMICONDUCTOR SUPERLATTICE; f2 = 0 WAS

SUGGESTED SO AS TO FACILITATE THE CALCULATIONS. THE OTHER

VALUES RESULT FROM COMPARING THE TERMS AND ARGUMENTS OF

THE EFFECTIVE HAMILTONIANS (33) AND (21), AND FROM THE

CORRESPONDING ALGEBRAIC AND NUMERICAL MANIPULATIONS.

H(q1, q2, φ1, φ2; t) =

φ2
1

2L1
+

φ2
2

2L2
+

φ1φ2

2L3
+

q21
2C1

+
q22
2C2

+
(q1 − q2)

2

2C3

+ q1f1(ω
′t) + q2f2(ω

′t), (32)

where we have defined: 1/L1 ≡ (L′
2+L′

3)/Υ, 1/L2 ≡ (L′
1+

L′
3)/Υ and 1/L3 ≡ 2L′

3/Υ, with Υ ≡ (1/2)
∑

i6=j L
′
iL

′
j ;

as can be readily checked the flux φi remains in-
variant in the limit qe → 0 yielding, as required,
H(q1, q2, φ1, φ2, qe; t) → H(q1, q2, φ1, φ2; t). In this case,
the term φ1φ2/(2L3) in (32) is derived from the energy
term (1/2)L′

3(q̇1 − q̇2)
2 according to the Kirchhoff ’s laws.

The mutual inductance terms corresponding to this cir-
cuit are φ1φ2/M12, φ1φ3/M13 and φ2φ3/M23 but we have
not considered them in (32) since we did not specify the
form of the couplings among L′

1, L′
2 and L′

3. In fact, the
“mesoscopic” character of this circuit lies upon the dis-
crete nature and small quantity (about 10) of the ele-
mentary electric charges being allocated in the capaci-
tors and not necessarily upon the small size of the cir-
cuit which would imply couplings among the inductors.4

Following the standard quantum time-average tech-
niques (Rahav 2003; Calcina-Nogales 2020) and setting
the canonical transformations φ1 = Φ1 + π~/qe and
φ2 = Φ2+π~/qe, we obtain from (32) the effective Hamil-

tonian function5

4 Interestingly, the phenomenon of current magnification referred to

by Flores and Utreras (Flores 2002) for two coupled inductances would

also occur in the two-mesh circuit with three inductances studied in

our work; progress is being carried on by us in that direction.
5 The resulting Hamiltonian operator corresponds to the Hamilto-
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H(Q1, Q2,Φ1,Φ2) =

~
2

L1q2e
cos

(
Φ1qe
~

)
+

~
2

L2q2e
cos

(
Φ2qe
~

)

+
2~2

L3q2e
cos

(
Φ1qe
2~

)
cos

(
Φ2qe
2~

)

+
Q2

1

2C1
+

Q2
2

2C2
+

(Q1 −Q2)
2

2C3
, (33)

where, for the case of the AC source voltages f1(ω
′t) =

2f1 cos(ω
′t) and f2(ω

′t) = 2f2 cos(2ω
′t), we obtain

1

L1

≡ 1

L1
J0

(
2f1qe
~ω′

)
,

1

L2

≡ 1

L2
J0

(
f2qe
~ω′

)
,

1

L3

≡ 1

L3

∑

n

J2n

(
f1qe
~ω′

)
Jn

(
f2qe
2~ω′

)
. (34)

By comparing the terms and arguments of
H(Q1, Q2,Φ1,Φ2) in (33) with those of HLC(X,Y,Kx,Ky)
in (21) we can verify, as expected, that the required form
of HLC is attained for static potential energies V (Q1, Q2)
and V (X,Y ) whose second derivatives are related as
VQ1Q1

/VXX = VQ2Q2
/VY Y = VQ1Q2

/VXY = (a/qe)
2.

Specifically, by choosing equal capacitances in (33), we
should have that VXX = 2(qe/a)

2/C1.

From the numerical values of fx1, fy2, M̃ , Ñ and

C̃ ∼= C̃(0) found in (30), we may now express the equiv-
alence among the coefficients of H(Q1, Q2,Φ1,Φ2) and
HLC(X,Y,Kx,Ky) in the compact notation that com-
prises the three equations

1

L1

:
1

L2

:
2

L3

= M̃ : Ñ : C̃, (35)

whence the the source voltage amplitudes f1, f2 and the
inductances can be found. We may take L′

1 = L′
2 for

simplicity, thus, from 1/L1 : 1/L2 = M̃ : Ñ in (35),
we have that J0(qef2/~ω

′)/J0(2qef1/~ω
′) ∼= 4/3 which

is satisfied for an infinte set of solutions, for example,
(qe/~ω

′)f1 = 0.517 and (qe/~ω
′)f2 = 0 (although f2 = 0

was so chosen just to facilitate the calculations, such a
value still deserves a further phyisical interpretation).

For these values, and by setting −2M̃ = (~/qe)
2/L1,

−2C̃(0) = 2(~/qe)
2/L3 in the Hamiltonians (21), (33), re-

spetively, we find

L′
1

L′
3

∼=1.4
(qe
~

)2 A2/C

C1ω2
− 1,

L′
1(L

′
1 + 2L′

3)

L′
3

∼=25

(
~

qe

)2
1

C
. (36)

nian function obtained with the semiclassical scheme, as was already

done in the case of the single-mesh LC circuit (Mamani 2018).

As we can see, the term (qe/~)
2(A2/C)/(C1ω

2) has to
have a lower bound to yield positive inductances; such
a bound will be determined by the characteristics of the
square lattice which, in this work, can be thought of as
a 2D semiconductor superlattice of the GaAs type (and
whose 1D version was where Bloch oscillations were
first observed). Thus, we may take as typical values:

A,C ∼ 1 meV,

a ∼ 100 Å,

fx1, fy2 ∼ ~ω/(aqe) ∼ 105 V/m. (37)

From the latter we have an estimation of ω ∼ 1012

Hz. Since VXX(Aa/~ω)2 = (Aqe/~)
2/(C1ω

2) ∼ 10−22 J
should hold in (30), we have then the estimation of C1 ∼
10−16 F. With these values, we have therefore from (36)
that L′

1
∼= 0.4L′

3 and L′
3 ∼ 10−7 H. Finally, an estimation

of the sources frequency ω′ can be made by assuming
that a maximum of just few electrons is to be alloted
in a (small) mesoscopic capacitor, which is other way for
interpreting the meaning of “discrete charge” LC circuit.
We may take then Q1,max = 10qe, which, together with

C1 = Q1,max/f1 and f1 ∼ ~ω′/qe, yields f1 ∼ 10−2 V

and ω′ ∼ 1013 Hz. More precise values for the results
of our numerical simulations and from comparing the
terms and arguments of the effective Hamiltonians (33)
and (21) are summarized in Table 1 .

We may now validate the consistency of the semiclas-
sical model invoked in our work: the value of the fre-
quency ω = 1012 Hz corresponds to an external field
wavelength λ ∼ 10−3 m, while the lattice constant is

a = 100 Å. The quantum wavepacket size can be taken
from Mamani et al. (Mamani 2017), where the semiclas-
sical method has proved to be consistent with the for-
mal quantum approach for a wavepacket initial width
∆x = 10a. We have therefore that λ ≫ ∆x ≫ a, as re-
quired for the validity of the semiclassical method (see,
for example Ashcroft and Mermin (1976)), and which in
turn implies that the intensity of the external electric
field |f| ∼ 106 V/m is low enough for a single-band tight-
binding model Hamiltonian to hold.

By solving numerically the system of equations (17)
for X(t), Y (t), Q1(t), Q2(t), with the values reported in
Table 1, we may relate the electronic dynamics in both
equivalent systems, the square lattice and the two-mesh
LC circuit. Since we have managed the electric fields
and the voltage sources in the former and latter sys-
tems, respectively, so as to have HLC(X,Y,Kx,Ky) ∼=
HLC(Q1, Q2,Φ1,Φ2), then their common energies are
0.218 meV, corresponding to the initial values X(0) =
Y (0) = 0.02a of the effective position coordinates. We
observe in Fig. 3(a(1)) a predominately diagonal oscil-
lating motion –although not a simple one– of the par-
ticle’s position about the origin of the effective position
XY plane of the square lattice, which corresponds also
to a predominately symmetric distribution of oscillat-
ing charges in the two-mesh LC circuit, as seen in Fig.
3(b(1)), in accordance with the diagram for HLC in Fig.
1, where the diagonal hopping element is the dominant
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FIG. 3.— Cases of electronic motion in: (a) the effective position XY plane, and (b) the two-mesh LC circuit. In case (a) the displacements are

measured in units of the lattice constant a = 100 Å; in case (b) the capacitors’ electric charges are measured in units of the electron’s charge

qe, the time is measured in units of the frequency inverse 1/ω = 10
−12 s. Cases (1) and (2) in both (a) and (b) correspond to oscillations with

zero and positive time-averages, respectively. Cases (1) and (2) in (b) resemble very much the AC and DC regimes, respectively, deduced in the

one-mesh LC circuit (Mamani 2018) as a consequence of a bifurcation condition.

one. Such a behavior, however, may change abruptly –as
a function of the total energy, for example– giving rise
to a DC regime or a supression of the mesh currents, as
it does in the one-dimensional case of the one-mesh LC
circuit (Mamani 2018), where we have showed that a bi-

furcation condition on the Q̇ − Q phase diagram can be
associated to such an abrupt change. Figs. 3(a(2)) and
3(b(2)) show position and charge oscillations with posi-
tive time-averages corresponding to an energy of 2.707
meV, contrasting with those of Figs. 3(a(1)) and 3(b(1)).
The extension of the one-dimensional bifurcation con-
dition to the two-dimensional case of the two-mesh cir-
cuit and its relation to the particle’s propagation in the
square lattice is an interesting issue worth to be treated
elsewhere.

4. CONCLUSIONS

We have established the formal equivalence between
two physical systems by means of the interactions engi-
neering scheme developed in this paper. Those systems
are: (i) a square lattice wherein an tight-binding elec-
tron propagates under the combined action of an exter-
nal high-frequency and homogeneous electric field and
a quadratic static potential, and (ii) a two-mesh LC cir-
cuit with discrete charge. Such formal equivalence is at-
tained by describing both systems by effective Hamilto-
nian functions having the same form and whose param-
eters can be numerically calculated when the Hamilto-
nian terms are correspondingly compared among them;
for deriving such effective Hamiltonians we have used
perturbative expansions up to ω−2 when ω → ∞. Inter-
estingly, we have found that the sought equivalence be-
tween the square lattice and the LC circuit is achieved
when we choose specific values of the oscillating elec-
tric field acting upon the lattice so that the 1st neigh-

bor interactions (Ã(0), B̃(0), order ω0) are suppressed and

the remaining 2nd neighbor interactions (C̃(0), order ω0)

and 3rd neighbor interactions (M̃ , Ñ , order ω−2) become
comparable (see Table 1).

We now suggest some interesting issues that could
be worth exploring further: (a) In a previous work we
have investigated the relation between a single-mesh
LC circuit (with discrete charge) and a charged parti-
cle hopping in a one-dimensional lattice (Mamani 2018);
in the present work we have extended such an analogy
to a two-mesh LC circuit and a square lattice. Thus,
it seems natural to inquire whether the extension to a
three-mesh LC circuit and a cubic lattice would be valid,
mainly, because the one-dimensional and the square lat-
tices do not exist as such (to our knowledge), but the
three dimensional cubic lattice does exist (although not
with the superlattice parameters specified in Table 1).
(b) Another natural extension of our work would be con-
sidering a rectangular lattice where, for example, the

sides have an incommensurate ratio of
√
3. In fact, this

latter case would be the best suited for simulating the
dynamics of a hopping electron in graphene. (c) Finally,
and motivated by the results in Fig. 3(a) for the square
lattice, we may suggest that the “AC regime” would indi-
cate a quantum regime where the electronic probability
densities corresponding to neighbor lattice sites overlap,
which indicates in turn a higher electric conductivity,
as compared to the “DC regime”. Thus, a higher and a
lower conducting regimes could be separated by a semi-
classical bifurcation condition.

APÉNDICE

A. DEFINITIONS OF THE EFFECTIVE HOPPING

ELEMENTS

The “tilde” symbols used in (13) and (14) that consti-
tute the effective hopping elements of Heff in (18) are
defined as:
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Ã = AFx0 +
1

2
BC

[(
Γ01
11 − Γ11

11

)
VXY −

(
Γ01
11 + Γ11

11

)
VY Y

]
ǫ2,

B̃ = BFy0 +
1

2
AC

[(
Γ10
10 − Γ11

10

)
VXY −

(
Γ10
10 + Γ11

10

)
VXX

]
ǫ2,

C̃ =
1

2
C(Γ0 + Γ1) +ABVXY

(
Γ0
01 − Γ1

01

)
ǫ2,

D̃ =
1

2
C(Γ0 − Γ1) +ABVXY

(
Γ0
01 + Γ1

01

)
ǫ2,

Ẽ =
1

2
BC

[(
Γ00
11 − Γ10

11

)
VXY +

(
Γ00
11 + Γ10

11

)
VY Y

]
ǫ2,

F̃ =
1

2
BC

[(
Γ00
11 + Γ10

11

)
VXY +

(
Γ00
11 − Γ10

11

)
VY Y

]
ǫ2,

G̃ =
1

2
AC

[(
Γ00
00 + Γ10

00

)
VXX +

(
Γ00
00 − Γ10

00

)
VXY

]
ǫ2,

H̃ =
1

2
AC

[(
Γ00
00 − Γ10

00

)
VXX +

(
Γ00
00 + Γ10

00

)
VXY

]
ǫ2,

J̃ =
1

8
C2

[(
Γ00
0 + Γ01

1

)
(VXX + VY Y ) + 2

(
Γ00
0 − Γ01

1

)
VXY

]
ǫ2,

K̃ =
1

8
C2

[(
Γ00
0 − Γ01

1

)
(VXX + VY Y ) + 2

(
Γ00
0 + Γ01

1

)
VXY

]
ǫ2,

M̃ =
1

4

[(
2A2Γ0

00 + C2Γ01
0

)
VXX − C2Γ01

0 VY Y

]
ǫ2,

Ñ =
1

4

[(
2B2Γ0

11 + C2Γ10
0

)
VY Y − C2Γ10

0 VXX

]
ǫ2.

The definitions of the “Γ” symbols used above are:

Γ0 = FxmF−ym

Γ1 = FxmFym

Γ0
00 = FxmF−xm/m2 Γ00

00 = FxpF−xmFy(m−p)/m
2

Γ1
00 = FxmFxm/m2 Γ01

00 = FxpFxmFy(m−p)/m
2

Γ0
01 = FymF−xm/m2 Γ10

00 = FxpFxmFy(m+p)/m
2

Γ1
01 = FymFxm/m2 Γ11

00 = FxpF−xmFy(m+p)/m
2

Γ0
10 = FxmF−ym/m2 Γ00

01 = FxpF−ymFy(m−p)/m
2

Γ1
10 = FxmFym/m2 Γ01

01 = FxpFymFy(m−p)/m
2

Γ0
11 = FymF−ym/m2 Γ10

01 = FxpFymFy(m+p)/m
2

Γ1
11 = FymFym/m2 Γ11

01 = FxpF−ymFy(m+p)/m
2

Γ00
0 = FxpFxqFy(m−p)F−y(m+q)/m

2 Γ00
10 = FxpFxmF−y(m+p)/m

2

Γ01
0 = FxpFxqFy(m−p)Fy(m+q)/m

2 Γ01
10 = FxpFxmFy(m+p)/m

2

Γ10
0 = FxpFxqFy(m−p)Fy(−m+q)/m

2 Γ10
10 = FxpFxmFy(−m+p)/m

2

Γ11
0 = FxpFxqFy(m−p)Fy(m−q)/m

2 Γ11
10 = FxpFxmFy(m−p)/m

2

Γ00
1 = FxpFxqFy(m+p)Fy(m−q)/m

2 Γ00
11 = FxpFymF−y(m+p)/m

2

Γ01
1 = FxpFxqFy(m+p)Fy(−m+q)/m

2 Γ01
11 = FxpFymFy(m+p)/m

2

Γ10
1 = FxpFxqFy(m+p)Fy(m+q)/m

2 Γ10
11 = FxpFymFy(−m+p)/m

2

Γ11
1 = FxpFxqFy(m+p)F−y(m+q)/m

2 Γ11
11 = FxpFymFy(m−p)/m

2

Sums are performed on the terms with the repeated
indices m, p, q and the variable m.

B. TIME-AVERAGE DERIVATION OF THE EFFECTIVE

DYNAMICAL COORDINATES

In this Appendix we apply the time-average tech-
niques that yield the system for the effective dynamical
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coordinates (13)-(16). This is done by replacing the time-
derivatives of the terms in (10) into the system (6)-(9)
yielding:

Ẋ + ω
dξx
dτ

=2A senαx + 2C senαx cosαy, (B1)

Ẏ + ω
dξy
dτ

=2B senαy + 2C cosαx senαy, (B2)

K̇x + ω
dηx
dτ

=− Vx(γx, γy), (B3)

K̇y + ω
dηy
dτ

=− Vy(γx, γy), (B4)

where we have defined αz ≡ Kz + ηz − gz, γz ≡ Z + ξz.
We will use later α0

z ≡ Kz + ηz0 − gz which results from

evaluating αz for ǫ = 0, and α00
z ≡ Kz − gz which results

from evaluating α0
z for ηz0 = 0. The application of the

time-average properties to the system (B1)-(B4) yields:

Ẋ =2A 〈senαx〉+ 2C 〈senαx cosαy〉 , (B5)

Ẏ =2B 〈senαy〉+ 2C 〈cosαx senαy〉 , (B6)

K̇x =− 〈Vx(γx, γy)〉 , (B7)

K̇y =− 〈Vy(γx, γy)〉 . (B8)

Combining (B5)-(B8) and (B1)-(B4) one obtains a system
for the fast coordinates:

ω
dξx
dτ

=2A (senαx − 〈senαx〉) + 2C (senαx cosαy − 〈senαx cosαy〉) , (B9)

ω
dξy
dτ

=2B (senαy − 〈senαy〉) + 2C (cosαx senαy − 〈cosαx senαy〉) , (B10)

ω
dηx
dτ

=− Vx(γx, γy) + 〈Vx(γx, γy)〉 , (B11)

ω
dηy
dτ

=− Vy(γx, γy) + 〈Vy(γx, γy)〉 . (B12)

The solutions of (B9)-(B12) are to be substituted in
(B5)-(B8) in order to have a system of differential equa-
tions for the slow coordinates Z, Kz. To achieve that,
and since the frequency ω is large, we expand the fast

coordinates ξz, ηz as power series of the small parame-
ter ǫ ≡ t/τ = 1/ω up to the order of ǫ2 with coeficients
ξzi, ηzi. The substitution of these series in two of the
trigonometric functions and in the derivatives Vx, Vy in
(B5)-(B8) leads to

senαx =senα0
x + ǫηx1 cosα

0
x +

(
ηx2 cosα

0
x − (1/2)η2x1 senα

0
x

)
ǫ2, (B13)

senαy =senα0
y + ǫηy1 cosα

0
y +

(
ηy2 cosα

0
y − (1/2)η2y1 senα

0
y

)
ǫ2, (B14)

Vx(γx, γy) =V 0
X +

(
ξx1V

0
XX + ξy1V

0
XY

)
ǫ+

(
ξx2V

0
XX + ξy2V

0
XY

)
ǫ2, (B15)

Vy(γx, γy) =V 0
Y +

(
ξx1V

0
XY + ξy1V

0
Y Y

)
ǫ+

(
ξx2V

0
XY + ξy2V

0
Y Y

)
ǫ2, (B16)

where γz0 ≡ Z + ξz0; the superscript “0” in the deriva-
tives of the potential energy means that its argument
is γz0 and the abscence of a superscript means that the
argument is Z. Substituting (B13)-(B16) in (B9)-(B12),
and comparing the terms in the same powers of ǫ, one

obtains:
(i) For ǫ0,

dξx0
dτ

=
dηx0
dτ

=
dξy0
dτ

=
dηy0
dτ

= 0. (B17)

(ii) For ǫ1,
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dξx1
dτ

=2A
(
senα00

x −
〈
senα00

x

〉)
+ 2C

(
senα00

x cosα00
y −

〈
senα00

x cosα00
y

〉)
, (B18)

dξy1
dτ

=2B
(
senα00

y −
〈
senα00

y

〉)
+ 2C

(
cosα00

x senα00
y −

〈
cosα00

x senα00
y

〉)
, (B19)

dηy1
dτ

=
dηx1
dτ

= 0. (B20)

(iii) For ǫ2,

dηx2
dτ

=− ξx1VXX − ξy1VXY , (B21)

dηy2
dτ

=− ξx1VXY − ξy1VY Y ; (B22)

dξy2
dτ

=
dξx2
dτ

= 0. (B23)

The convenient solutions for (B17), (B20) and (B23)
are chosen as ξx0 = ηx0 = ξy0 = ηy0 = 0, ηz1 = 0 and
ξz2 = 0, respectively. The resulting right-hand side of
the system (B5)-(B8) stands now as:

Ẋ =2A
〈
senα00

x

〉
+ 2C

〈
senα00

x cosα00
y

〉
+ 2

(
A
〈
ηx2 cosα

00
x

〉
+C

〈
ηx2 cosα

00
x cosα00

y

〉
− C

〈
ηy2 senα

00
x senα00

y

〉)
ǫ2,

(B24)

Ẏ =2B
〈
senα00

y

〉
+ 2C

〈
cosα00

x senα00
y

〉
+ 2

(
B
〈
ηy2 cosα

00
y

〉
+C

〈
ηy2 cosα

00
x cosα00

y

〉
− C

〈
ηx2 senα

00
x senα00

y

〉)
ǫ2,

(B25)

K̇x =− VX , (B26)

K̇y =− VY , (B27)

where α00
z depends on Kz and on the external fields,

while ηz2 is to be found by solving (B18), (B19), (B21)
and (B22). The result will be the sought system of differ-
ential equations for the slow coordinates Z, Kz whose
solution will permit us to deduce the effective Hamilto-
nian function H(X,Y,Kx,Ky).

Let us express the trigonometric functions in (B24),
(B25) in complex form:

senα00
z =

1

2i

∑

n

[
eiKzFzn − e−iKzF−zn

]
e−inτ , (B28)

cosα00
z =

1

2

∑

n

[
eiKzFzn + e−iKzF−zn

]
e−inτ , (B29)

where we have used the following Fourier expansion
given that gz(τ) is a periodic real and odd function of
t, corresponding to the real and even function fz(τ):

eigz =
∑

n

Fzne
inτ . (B30)

For the external field fz(ωt) = 2
∑∞

n=1 fzn cos(nωt) the
coefficients Fzn are

Fzm =
∑

n1,n2,n3,...

Jn1
(2fz1)Jn2

(2fz2/2)Jn3
(2fz3/3) . . . δm,n1+2n2+3n3+... . (B31)

Substituting now (B28), (B29) in (B18), (B19), and solving these along with (B21), (B22) for ηz2 we find:

ηz2 =
∂Λ

∂Z
, (B32)

where



26 E. Mamani, D. Sanjinés, M. Calcina-Nogales

Λ(X,Y ) ≡ 1

2i

∑

n6=0

{
2AVX

(
eiKxFxn − e−iKxF−xn

)
+ 2BVY

(
eiKyFyn − e−iKyF−yn

)

+C (VX + VY )
(
ei(Kx+Ky)FxmFy(n−m) − e−i(Kx+Ky)FxmF−y(n+m)

)

+C (VX − VY )
(
ei(Kx−Ky)FxmFy(−n+m) − e−i(Kx−Ky)FxmFy(n+m)

)} e−inτ

n2
; (B33)

a sum in Λ is performed on the terms with the repeated
index m. Substituting now (B32), (B28) and (B29) in
(B24) and (B25), and performing the time-average op-

erations with
〈
ei(n±m)τ

〉
= δn,∓m, we obtain the system

for the effective dynamical coordinates X, Y, Kx, Ky

given in (13)-(16).
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