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RESUMEN

Se analizan las regiones de sincronización de dos mapas logı́sticos acoplados difusiva-
mente en un amplio plano de parámetros. Se encontraron nuevas estructuras bien definidas
que amplifican la caracterización de dos osciladores móviles. Debido a su simplicidad y
a su rico comportamiento dinámico, los mapas logı́sticos acoplados nos permiten estudiar
diferentes tipos de sincronización. Nos enfocamos especı́ficamente en la sincronización en
fase caracterizándola mediante periodicidades que se presentan simétricamente en el plano
de parámetros. Lo anterior, nos permite distinguir claramente entre regiones con compor-
tamiento regular o caótico. Finalmente, se indican posibles aplicaciones de este tipo de sis-
temas.

Código(s) PACS: 05.45.Xt, 05.45.Pq,05.45.-a

Descriptores: Sincronización, caos — sistemas caóticos — dinámica no lineal.

ABSTRACT

We analyze the synchronization regions of two diffusively coupled logistic maps in an am-
ple parameter plane where we found new and well-defined structures of synchrony that allow
us to amplify the characterization of two motile oscillators. Due to their simplicity and rich
dynamical behavior, the coupled logistic maps enable us to study different kinds of synchro-
nization. We focus specifically on phase synchronization characterizing it by periodicities that
symmetrically pervades the parameter plane. A clear distinction is found between the above
mentioned synchronous regions from those exhibiting chaotic behavior. Finally, we point out
some possible applications of this kind of system.

Subject headings: Synchronization, chaos — chaotic systems — nonlinear dynamics.

1. INTRODUCTION

The synchronization phenomena, so abundant in
nature, and extensively studied in a wide variety
of systems, from physics to social sciences, is de-
fined by Pikovsky et al. (2001) as an adjustment of
rhythms of self-sustained oscillators due to their in-
teractions. Several works have been devoted to study
synchronous behavior in different kind of oscilla-
tors, for instance, in electronically-implemented sys-
tems, such as the paradigmatic chaotic circuit pro-
posed by Chua and introduced by Matsumoto (1984).
Coupled Chua’s circuits give rise to chaotic syn-
chronization firstly formulated intuitively by Tang
et al. (1983), and demonstrated afterwards by Chua
(1993). Other interesting circuits exhibiting synchro-
nization are the light controlled oscillators intro-

duced by Ramı́rez-Ávila et al. (2003), and character-
ized by their pulsatile coupling; and also that con-
ceived by L’Her et al. (2016) for studying coupled

†http://www.fiumsa.edu.bo/docentes/rbustos/
‡http://www.fiumsa.edu.bo/docentes/mramirez/

logistic maps. It is worthy to mention the oscilla-
tors introduced by Kuramoto & Nishikawa (1987)
which became an example for excellence for study-
ing synchronization in different network configura-
tions in many contexts, including power-grids de-
scribed by Schultz et al. (2014), and in mobile agents
studied by Fujiwara et al. (2011). The omnipresence
of synchronization in nature makes that this phe-
nomenon acquires an essential role in science due
to their universal feature that is understood within
the nonlinear dynamics conceptual framework as ex-
pounded by Fujisaka & Yamada (1983). The study
of synchronization using maps was started with the
work of Yamada & Fujisaka (1983). Some other in-
teresting systems described by maps exhibit syn-
chronization such as in neurons described by Sun &

Cao (2016), Calderón de la Barca, & Ramı́rez-Ávila

(2017) and Iglesias & Ramı́rez-Ávila (2019), and
even in social systems which are studied through
the relationship between synchronization and con-
sensus as stated in the edited book of Kocarev (2013),
and analyzed in terms of discrete models by Subieta-
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Frı́as & Ramı́rez-Ávila (2017). Transients or syn-
chronization time, plays also an important role in
the description of synchronization as pointed out by

Ramı́rez-Ávila et al. (2006), where they study syn-
chronization regions and transients in locally cou-
pled oscillators in linear and ring configurations.

In this work, we describe a huge region of the pa-
rameter plane of a systems composed of two coupled
logistic maps, where the dynamical behavior allowed
us to describe the synchronous behavior of the sys-
tem according to the coupling strength, and the dif-
ference between the oscillators. The description in
terms of periodicities gives an insight of the dynam-
ical behavior of such a system. This paper is orga-
nized as follows: the logistic map and its features
are set forth in Sect. 2, the model for two coupled
maps is presented in Sect. 3, where we focus on the
types of coupling, the definition of the synchroniz-
ability factor, the synchonization regions and some
other important remarks. The results are presented
in Sect. 4 emphasizing in the aspects related to peri-
odicities and the possibility of varying coupling in re-
lationship with mobile oscillators. Finally, in Sect. 5,
we give conclusions and some perspectives.

2. THE LOGISTIC MAP AND ITS FEATURES

The logistic map is represented by a recurrent
equation based on a model proposed by Verhulst
(1838). This model describes population dynamics
taking into account aspects like birth and death rate.
This map was formulated by May (1976) who real-
ized about the complicated dynamics exhibited by
this very simple system including chaotic behavior.

This map has been used in many different disci-
plines and situations going from studies on compet-
itive models, developed by Burgoa & Nogales (2001)
to the emergence of coherent motion as studied
by Garcı́a-Cantú et al. (2011), and the spatiotempo-
ral intermittency in coupled maps lattices described
by Kaneko (1985), and Chaté & Manneville (1988).
On the other hand, due to their simplicity and ro-
bustness as chaos generator, coupled logistic maps
have been extensively used to describe synchroniza-
tion in different scenarios as for instance with de-
layed coupling as studied by Masoller et al. (2001).
For the above-mentioned reasons, we chose as a
model for the dynamics of each of the oscillators a
logistic map given by:

Dn+1 = µDn(1−Dn) , (1)

where Dn is a number between zero and one that
represents the dynamics of the oscillator. D0 repre-
sents the initial condition; µ is the control parame-
ter, a positive number whose value determines the
dynamical behavior of the map, and n plays the role
of time, as explained in Bustos-Espinoza & Ramı́rez-

Ávila (2012).

2.1. Main hypothesis

We work with two coupled oscillators, consider-
ing the following simplifying assumptions concern-
ing their dynamics:

• The coupled oscillators constitute an isolated
system.

• Each oscillator follows a logistic map dynamics.

• The oscillators cannot collide.

• We assume that the oscillators interact in two
modes: maintaining a fixed distance between
them or not (see Sect. 3)

3. MODEL

Intending to study the synchronization of two
motile or static oscillators, we consider the instan-
taneous coupling between two logistic maps whose
dynamical equations are:

D
(1)
n+1 = µ(1)D(1)

n

(

1−D(1)
n

)

+ β12

(

D(2)
n −D(1)

n

)

D
(2)
n+1 = µ(2)D(2)

n

(

1−D(2)
n

)

+ β21

(

D(1)
n −D(2)

n

) ,

(2)

where superscripts identify the oscillators and sub-
scripts represent the temporal evolution, and β rep-
resents the coupling strength between oscillators.
Assuming the coupling symmetry: β12 = β21 = β. We
consider the following cases:

• Constant coupling (β = const):
β constant means that oscillators do not move
and the coupling strength does not change.

β = β12 = β21 = constant . (3)

• Distance dependent coupling (β 6= const):
β 6= const, means that oscillators can move.
We proposed that the coupling strength varies
with the inverse of the square of the Eu-
clidean distance ρ, between their spatial posi-

tions, (x
(i)
n , y

(i)
n , z

(i)
n ), of the oscillators:

β ∝ ρ−2

ρn =

√

(

x
(2)
n − x

(1)
n

)2

+
(

y
(2)
n − y

(1)
n

)2

+
(

z
(2)
n − z

(1)
n

)2 .

(4)

3.1. Existence Conditions

Taking into account that Dn must be defined in
the interval [0, 1], and in order to avoid values out
of range, we need to impose the conditions:

if Dn ≥ 1 ⇒ Dn = 1

if Dn ≤ 0 ⇒ Dn = 0 .

3.2. Abstract Vector

In order to study the oscillators’ dynamics, we de-

fine the following n-dimensional abstract vector, ~V ,

~V (i)
n = f(D(i)

n , ρn) , i = 1, 2 , (5)

where D
(i)
n represents the i-th oscillator dynamics

and ρn the Euclidean distance with respect to other
oscillator. In this manner, we consider that each os-
cillator will be described by this new mathematical
definition.
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FIG. 1.— (Color online) Synchronizabilty factor σn in terms

of the parameters µ1 and µ2, after n = 106 time steps, for two

coupled logistic maps defined in the interval [3, 4] and being

β = 0.0029.

FIG. 2.— (Color online) Parameter plane (µ1, µ2), in terms of the

synchrony factor σn whose values are related to the color bar.

3.3. Synchronizability Factor

In order to quantify the general synchronization
between two or more oscillators we define the syn-
chronizability factor as:

σi,j
n =

1
(

N

2

)

N−1
∑

j=1

N
∑

k>j

∣

∣

∣
D(i)

n −D(j)
n

∣

∣

∣
, (6)

where in the case of two oscillators, as used

by Bustos-Espinoza & Ramı́rez-Ávila (2012):

σ1,2
n =

∣

∣

∣
D(1)

n −D(2)
n

∣

∣

∣
. (7)

There are many works dedicated to synchronization
on coupled maps that use a synchronization factor
as the indicator to characterize synchronization, e.g.,
several authors used the variance as such an in-

dicator, i.e., σ2 = 1
N

〈

∑

i [xi(t)− 〈x〉]
2
〉

t
→ 0 to ana-

lyze coupled chaotic maps. Thus, Lind et al. (2004)
adopt this indicator to study the coherence in scale-
free networks; Masoller & Martı́ (2005) employ the
variance to characterize the synchronous behavior
of an array with random delays in the maps’ dy-
namics; Lind et al. (2006) use this indicator in net-
works with different topologies and considering de-
layed couplings. In this work, we characterize syn-
chronization using Eq. (7) when σn → 0 for describ-
ing complete synchronization, in the same line of the
usage of the variance as an indicator. Besides, we
also consider the periodical oscillating behavior of σn

as a manner to characterize phase-synchronization.

3.4. Cases Studied

We considered three synchronous situations:
complete synchronization and antisynchronization
means a synchronization in phase and amplitude,
while phase synchronization means a periodicity
value for each synchrony factor considered. Thus, we
define each case as a behavior of the synchronizabil-
ity factor,

• Complete synchronization: (σn → 0)

• Complete Antisynchronization: (σn → 1)

• Phase synchronization: (σn → oscillant)

3.5. Spatial Positions and Synchronization

Following our model, each oscillator can keep a
fixed distance as long as we get a synchronization
factor threshold, σthreshold

n , indicating that the system
tends toward complete synchronization; in that case,
the oscillators turn on synchronized. We can express
that fact with the following expression:

if σn ≥ σthreshold
n ⇒

(

x
(i)
n+1, y

(i)
n+1, z

(i)
n+1

)

=
(

x(i)
n +∆x, y(i)n +∆y, z(i)n +∆z

)

if σn < σthreshold
n ⇒

(

x
(i)
n+1, y

(i)
n+1, z

(i)
n+1

)

=
(

x(i)
n , y(i)n , z(i)n

)

,

(8)

where ∆x, ∆y and ∆z, are small random displace-
ments in the x, y and z directions respectively, fol-
lowing a Gaussian distribution.

3.6. Noncollisional Condition

In order to avoid collisions between oscillators once
we randomly generate their initial positions, we in-
troduce the condition:

if dn ≤ dthreshold ⇒
(

x
(i)
n+1, y

(i)
n+1, z

(i)
n+1

)

=
(

x(i)
n +∆x, y(i)n +∆y, z(i)n +∆z

)

∧ dn+1 > dn ,

(9)
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FIG. 3.— (Color online) Synchronization regions, obtained with µ(1) = µ(2) = 3.83, in the plane coupling strength (β) vs. parameter

mismatch (∆µ) and described in terms of the synchronizability, σ whose values are represented in the color bar, similar to that used in

Fig. 2. The central down part was reported by Bustos-Espinoza & Ramı́rez-Ávila (2016).

FIG. 4.— (Color online) (a)–(e) Time series of variables D(1) (blue) and D(2) (red), and (f)–(j) synchronizability, σ: (a) and (f):

∆µ = 0.0000, β = 0.0064, complete synchronization (σ → 0); (b) and (g): ∆µ = 0.2045, β = 0.0342, phase synchronization (σP = 5);

(c) and (h): ∆µ = 0.0220, β = 0.0128, phase synchronization (σP = 6); (d) and (i): ∆µ = 0.0695, β = 0.0128, phase synchronization

(σP = 10); (e) and (j): ∆µ = 0.0685, β = 0.0545, chaos (σP → ∞).
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FIG. 5.— (Color online) Phase diagram: ∆µ vs. β in terms of σP . The horizontal color bar represents the main periodicities appearing

in the synchronization regions and also the situation of non-synchronization (white=chaos). The darkness regions (black color) means

periods greater than 80. It is important to underline a integer sequence of periods found: 3, 5, 6, 10, 12, 20, 24, 40, 48, 80,... Bustos-

Espinoza & Ramı́rez-Ávila (2016) reported the central down part.

FIG. 6.— (Color online) Time series of (a)–(e) variables D(1) (blue) and D(2) (red), and (f)–(j) synchronizability, σ: (a) and (f): ∆µ =
0.0000, β = 0.0070, complete synchronization (σ → 0); (b) and (g): ∆µ = 0.0100, β = 0.0050, phase synchronization (σP = 3); (c) and (h):

∆µ = 0.0855, β = 0.0085, phase synchronization (σP = 5); (d) and (i): ∆µ = 0.0260, β = 0.0154, phase synchronization (σP = 6); (e) and

(j): ∆µ = 0.0770, β = 0.0565, chaos (σP → ∞).
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FIG. 7.— (Color online) Time series of, (a)–(d), the dynamical variables D(1) (blue) and D(2) (red); (e)–(h) thr synchroniz-

ability factor σ; (i)–(l) the relative distance ρ (black) and coupling strength, β (brown). The first column (a), (e) and (i) illus-

trates complete synchronization, with initial conditions (i.c.): ~V
(1)
0 = (D

(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.150, 5.250, 8.000, 5.250); ~V

(2)
0 =

(D
(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.250, 8.000, 5.250, 8.000); ρ = 1.900; (b), (f) and (j) show a phase synchrony, with i.c.: ~V

(1)
0 =

(D
(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.10, 8.25, 5.00, 8.25); ~V

(2)
0 = (D

(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.250, 5.000, 8.250, 5.000); ρ = 1.900, with a pe-

riod σP = 48; (c), (g) and (k) show a anti-synchrony, with i.c.: ~V
(1)
0 = (D

(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.100, 5.000, 5.000, 5.000); ~V

(2)
0 =

(D
(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.250, 8.300, 8.756, 8.000); ρ = 0.2, with a period σP = 2; (d), (h) and (l) show a chaotic situation, with i.c.:

~V
(1)
0 = (D

(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.150, 5.250, 8.000, 5.250); ~V

(2)
0 = (D

(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.250, 8.000, 5.250, 8.000); ρ = 1.900, with

a period σP → ∞. All pics with µ1 = µ2 = 3.830

.

where dthreshold, is a threshold distance that ensures
non-collision between oscillators, thus avoiding an
infinite coupling strength.

3.7. Synchronization Regions

Our system is composed of two coupled logistic
maps. To study the synchronization regions in the
parameter plane, we determine a correlation be-
tween, coupling strength β, parameter mismatch
∆µ and σn. And the most important and “new” ap-
proach: β vs. parameter mismatch ∆µ, and the σ–
periodicities.

D
(1)
n+1 =

(

µ(1) +
∆µ

2

)

D(1)
n

(

1−D(1)
n

)

+ β
(

D(2)
n −D(1)

n

)

D
(2)
n+1 =

(

µ(2) +
∆µ

2

)

D(2)
n

(

1−D(2)
n

)

+ β
(

D(1)
n −D(2)

n

)

.

(10)

4. RESULTS

We can characterize the synchronization of the sys-
tem following the model described in Sect. 3, reveal-
ing the synchronizability or synchronization factor σ
in terms of the parameters, i.e., µ(1) − µ(2), where σ,

has been computed taking the mean over the last 700
values. The parameters µ(i), (i = 1, 2) where for sim-

plicity, we adopt the notation µ(i) = µi, are defined
in the interval [3, 4], regions where the logistic cou-
pled maps can exhibit regular or chaotic behavior, as

was reported by Bustos-Espinoza & Ramı́rez-Ávila
(2012). In Fig. 1, we show a three-dimensional in-
sight µ1−µ2−σ that represents the surface generated
after n = 106 time steps, and considering a coupling
strength, β = 0.0029. The projection of Fig. 1 onto
the plane µ1 − µ2 (the parameter plane) is shown in
Fig. 2, where the color code is related to the value
of σ. Both from Figs. 1 and 2, it is easy to identify a
remarkable point for which σ plummets to zero. This
point corresponds to µ1 = µ2 = 3.83. In what it fol-
lows, we will consider these values of µi as referen-
tial ones to describe the dynamical behavior of the
coupled maps when the parameter mismatch (∆µ)
is increased. The computation of the σ values when
varying the coupling strength (β) and ∆µ results in
constructing the phase diagram of the system after
an extensive analysis of the periodicities.

4.1. Constant Coupling
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In order to find the synchronization regions for the
system of two coupled logistic map, we follow the
model explained in Sect. 3, i.e., β = const or nonmov-
ing oscillators. We recompute the synchronizability
σ using Eq. (10) and introducing the parameter mis-
match ∆µ = µ1 − µ2, i.e., when both oscillators are
identical ∆µ = 0 or they are nonidentical ∆µ 6= 0. We
chose an ample interval of coupling strength val-
ues, β, obtaining a new parameter plane given by
β vs. ∆µ and depicted in terms of the σ-values shown
in Fig. 3, where it is notable the symmetry mani-
fested for the quadratic form of the logistic maps.

To know more about the dynamics of the system,
we choose some points inside some regions of Fig. 3
for obtaining the evolution of the dynamical vari-
ables, D(i), (i = 1, 2), and their corresponding σn time
series shown in Fig. 4(a)–(e) and Fig. 4(f)–(j) respec-
tively.

From Fig. 4(a) we observe that the signals are
completely synchronized, i.e. our quantifier of the
phenomenon, σ, goes to zero (σ → 0) as it is shown
in Fig. 4(f). In Figs. 4(b)–(d), we can see that the
time series are in phase synchronization, whose syn-
chronizability factor oscillates with a well defined
period, shown in Figs. 4(g)–(i). Finally, in Figs. 4(e)
and (j) the time series exhibit a chaotic behavior
and their synchronizability σ oscillates without any
specific period. Time series of (a)–(e) variables D(1)

(blue) and D(2) (red), and (f)–(j) synchronizability, σ,
are: (a) and (f): ∆µ = 0.0000, β = 0.0064, complete
synchronization (σ → 0); (b) and (g): ∆µ = 0.2045,
β = 0.0342, phase synchronization (σP = 5); (c) and
(h): ∆µ = 0.0220, β = 0.0128, phase synchronization
(σP = 6); (d) and (i): ∆µ = 0.0695, β = 0.0128, phase
synchronization (σP = 10); (e) and (j): ∆µ = 0.0685,
β = 0.0545, chaos (σP → ∞).

4.2. Periodicities

To have a deeper insight of the system’s dynam-
ical properties, we analyze the parameter plane by
measuring the periods of the synchronizability, σP

taking the mean over the last 500 values of each σ.
With this technique we obtain a new extended pa-
rameter plane, β vs.∆µ described in terms of the pe-
riodicities σP , shown in Fig. 5, where the horizontal
color bar represents the main periodicities appearing
in the synchronization regions. The extreme cases,
complete synchrony and chaos, are defined as that
they do not have any periodicity because the syn-
chronizability in these cases remains stable or oscil-
lates chaotically, respectively. Note that the symme-
try and the relevant regions of apparent same σ val-
ues in Fig. 5. Another interesting issue found in the
upper part of Fig. 5, below the orange region with
periodicity 3, is the presence of regions with simi-

lar shapes to those found by Ramı́rez-Ávila & Gallas
(2011) in the parameter space of the Tinkerbell map.

To test the system we choose some points inside
specific regions for evaluating the dynamic variables,
D(i), and their corresponding synchronizability σ, as
we can see in Fig. 6(a)–(e) and Fig. 6(f)–(j) respec-
tively. The time series of the variables D(1) and D(2)

are represented in blue and red respectively. The
chosen points (∆µ, σ) were: (0.0000, 0.0070), show-
ing complete synchronization, i.e. σ → 0; (b) and (g):
(0.0100, 0.0050), exhibiting phase synchronization,
with σP = 3; (c) and (h): (0.0855, 0.0085), also display-
ing phase synchronization, with σP = 5; (d) and (i):
(0.0260, 0.0154), also showing phase synchronization,
with σP = 6; and finally (e) and (j): (0.0770, 0.0565),
illustrating chaotic behavior, without any specific pe-
riodicity. Note the integer sequence of periods: 3, 5,
6, 10, 12, 20, 24, 40, 48, 80, 96,...

4.3. Integer Sequence of Periods

We found the integer sequence of periods: 3, 5,
6, 10, 12, 20, 24, 40, 48, 80, 96, ..., might be de-
scribed by the recurrent integer sequence relation
given by Eq. (11), with a new seed, i.e., P (1) = 3 and
P (2) = 5, different of what was found by Brockhaus
(2009). We do not include the extreme cases of com-
plete synchronization and chaos.

P (n) = 2P (n− 2) (n > 2);

P (1) = 3, P (2) = 5
(11)

4.4. Distance dependence

As we proposed in Sect. 3, synchronization de-
pends on the magnitude of the coupling strength, β,
i.e., we can consider a system where the oscillators
can move according to Eqs. (8) and (9); that means
a permanent change in the spatial positions before
they can synchronize. In several cases, movement
tends to facilitate synchronization, as was pointed

out by Bustos-Espinoza & Ramı́rez-Ávila (2012).
In this work, we study an amplified parameter
plane in order to confirm if the movement enhances
or not the synchronization. To this end, we study

the abstract vector ~V , defined in Eq. (5), i.e., the
dynamical variables, D(i), (i = 1, 2), the relative
distance between oscillators, ρ, altogether with their
correspondent coupling strength, β ∝ ρ−2 and the
synchronizability factor, σ, the whole as a function of
time n. The results are shown in a matrix of graphs
shown in Fig. 7, where we can check the time series
of the dynamical variables D(1) (blue) and D(2) (red),
in Fig. 7(a)–(d); the synchronizability σ in Fig. 7(e)–
(h), and the relative distance, ρ (black) and the
coupling strength, β (brown) in Fig. 7(i)–(l). Drawing
attention to the columns, the first one Figs. 7(a),
(e) and (i) describing the situation of complete
synchronization, with the initial conditions (i.c.):
~V

(1)
0 = (D

(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.15, 5.250, 8.000, 5.250);

~V
(2)
0 = (D

(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.250, 8.000, 5.250, 8.000);

a threshold distance, dthreshold = ρ = 1.900; (b),
(f) and (j) shown a phase synchrony, with i.c.:
~V

(1)
0 = (D

(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.10, 8.250, 5.000, 8.250);

~V
(2)
0 = (D

(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.25, 5.000, 8.250, 5.00);

with a threshold distance, ρ = 1.900, and a pe-
riodicity value, σP = 48. In the situation shown
in (c), (g) and (k) we decrease the threshold
distance, ρ = 0.2 in order to get an anti-

synchronization, i.e., D
(1)
n + D

(2)
n = 1, with i.c.:
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~V
(1)
0 = (D

(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.10, 5.000, 5.000, 5.00);

~V
(2)
0 = (D

(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.25, 8.300, 8.756, 8.00).

In this column the dynamic oscillation goes from
0 to 1 repeating a few times (n = 118); and finally,
(d), (h) and (l), shown a chaos situation, with i.c.:
~V

(1)
0 = (D

(1)
0 , x

(1)
0 , y

(1)
0 , z

(1)
0 ) = (0.15, 5.250, 8.000, 5.25);

~V
(2)
0 = (D

(2)
0 , x

(2)
0 , y

(2)
0 , z

(2)
0 ) = (0.25, 8.000, 5.250, 8.000);

a threshold distance, ρ = 1.900, with a peri-
odicity σP → ∞. All pics were calculated with
µ1 = µ2 = 3.830

5. CONCLUSIONS AND PERSPECTIVES

Using the proposed model and the extended do-
main of our parameters we get an amplified new syn-
chronization region, where we apply the periodicity
technique, reported by Bustos-Espinoza & Ramı́rez-

Ávila (2016), in order to get a new phase diagram. It
was possible to identify a natural sequence of inte-
gers (periods) that appear on our map, this sequence
comes from a bifurcation cascade into the parameter
plane, exiting a chaotic window and going to another
chaotic region in a system of two coupled logistic
maps whose dynamical behavior in terms of their in-
teger periodicities, follows a recurrence relation with
a new seed, a different to that found by Brockhaus
(2009), who combine the series, P (n) = 3× 2n and
P (n) = 5× 2n, but without initial term 3 in the first
one.

In our study of static and dynamic situations, we
find in both cases other types of synchronization be-
sides the complete one, i.e. phase and anti synchro-
nization. The abstract vector, which includes dynam-
ics and spatial positions, enables us to understand in

a deeper way the dynamical aspects related to syn-
chronization in this type of system. Another impor-
tant result is the confirmation that movement tends
to enhance synchronization.

Our comprehensive study on the synchronization
of coupled logistic maps using periodicities, allowed
us to find synchronization regions with shapes very
different to the typical Arnold tongues and with the
feature that due to the knowledge of periods, the
determination of the so-called winding numbers is
done. The huge interval of coupling strength values
considered in this work might be essential informa-
tion in the situation in which the oscillators are mov-
ing. This knowledge permits us to know instanta-
neously whether the oscillators are located in posi-
tions allowing synchronization. The method to detect
synchronization developed here might be extended
to systems with many coupled maps and organized
under different topologies similar to those studied
by Lind et al. (2004a, 2006). Moreover, our method
might also be used for detecting synchronization in
other kinds of maps, for instance, in cubic maps ex-
hibiting bistability as those studied by Lind et al.
(2004) or multistability as in the case of coupled trios
of Rulkov maps considered by Iglesias & Ramı́rez-

Ávila (2019). Finally, it is possible to use other po-
tentials according to the type of movement and inter-
action between the oscillators, as the Lennard-Jones
potential that models soft attractive, and repulsive
interactions.

Conflict of interests

Authors declare that there is no conflict of interest
with respect to the publication of this document.

REFERENCIAS

Brockhaus, K. 2009 in The On-Line Encyclopedia of Integer Se-
quences (A164095), available in https://oeis.org/A164095

Burgoa, K. L., & Nogales, J. A. C. 2001, Revista Boliviana de
Fı́sica, 7, 51

Bustos-Espinoza, R. O. E., & Ramı́rez-Ávila, G. M. 2016, The Eu-
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Ramı́rez-Ávila, G. M.,& Gallas, J. A. C. 2011, Revista Boliviana de
Fı́sica, 19, 1

Schultz, P., Heitzig, J., & Kurths, J. 2014, New Journal of Physics,
16, 125001
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